130. Glycosylidene Carbenes

Part 24¹)

Reactivity Modulation by Protecting Groups of the Addition of Glycosylidene Carbenes to Electron-Rich Alkenes

by Christian Waldraff, Bruno Bernet, and Andrea Vasella*

Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

(10.VI.97)

The reactivity of glycosylidene carbenes derived from pivaloylated vs. benzylated diazirines 1 and 2 towards enol ethers have been examined. The pivaloylated 1 led to higher yields of spirocyclopropanes than the benzylated 2. Among the enol ethers tested, dihydrofuran 6 proved most reactive, yielding 71-72% of the spiro-linked tetrahydrofuran 7, while the benzylated diazirine 2 afforded only 33% of the analogue 8 (*Scheme 1*). Other enol ethers proved much less reactive. The addition of 1 and 2 to the dihydropyran 10 and the 2,3-dihydro-5-methylfuran 15 gave low yields of single cyclopropanes (\rightarrow 12, 14, and 16), and the glycals 17 and 18, and (*E*)-1-methoxyoct-1-ene (23) did not react. The main products of these reactions were the azines (*Z*,*Z*)-11 and (*Z*,*Z*)/(*E*,*E*)-13. Similarly, 1 and 2 reacted poorly with (*Z*)-1-methoxyoct-1-ene (24), leading to the cyclopropanes 25/26/27 and 28/29/30/31 (*Scheme 2*). Main products were again the azines (*Z*,*Z*)-11 and (*Z*,*Z*)/(*E*,*E*)-13. The structure of 7 and 25 was established by X-ray analysis (*Figs. 1* and 2). The mechanism of addition of glycosylidene carbenes to enol ethers is discussed. AM1 Calculations indicate that the LUMO_{carbene}/HOMO_{aikoxyalkene} interaction is dominant at the beginning of the reaction, while the transition states are characterized by a dominant interaction of the doubly occupied, sp²-hybridized orbital of the carbene with the LUMO of the enol ether. The relative reactivity of the carbene stowards either the enol ethers or the diazirines determine type and yields of the products.

1. Introduction. – The nucleophilic character of glycosylidene carbenes has been evidenced, among others, by their reaction with electron-poor alkenes (for reviews, see [2-4]). Thus, glycosylidene carbenes derived from the diazirines 1 [5], 2 [6], and 3 [7], and from the 4-toluenesulfonohydrazide sodium salts 4 [8] and 5 [9] add readily to electron-poor alkenes, leading to spirocyclopropanes. Yields of the products derived from the pivaloylated diazirine 1 were higher than those obtained from the benzylated diazirine 2, showing that the nature of the protecting groups influences the (nucleophilic) reactivity

of these alkoxycarbenes²). One expects the electrophilic properties of glycosylidene carbenes, evidenced by their reaction with phosphines [11], to be similarly influenced by the protecting groups. Only few examples for the addition of alkoxy carbenes (see [12] and refs. quoted therein), alkoxyalkyl carbenes [13], and alkoxyalkyl carbenoids [14] [15] to enol ethers are known, while the addition of mono- and dihalo carbenes to enol ethers, including glycals [16] [17], is amply documented.

To probe the influence of O-substituents on the reactivity of glycosylidene carbenes towards enol ethers, we chose the dihydrofurans 6 and 15 and the dihydropyran 10 as reaction partners. Alkyl substituents at the C=C bond usually raise the reactivity towards electrophilic carbenes [12] [18-20], and we expected dihydrofurans to be more reactive than dihydropyrans, by analogy to the reactivity difference between cyclopentenes and cyclohexenes [18] [21]. Addition to the (E)- and (Z)-1-methoxyoct-1-ene (23 and 24, resp.) should provide information about the diastereoselectivity of the cyclopropanation.

2. Results and Discussion. – Thermolysis at 45° or photolysis at -20 and -60° of the pivaloylated diazirine 1 in the presence of a 20-23-fold excess of the dihydrofuran 6 led diastereoselectively to the crystalline cyclopropane 7 (71-72%; Scheme 1 and Table 1). Similarly, thermolysis of the benzylated diazirine 2 in the presence of the same excess of 6 at 23° gave selectively the analogous cyclopropane 8, but only in 33% yield. Both 7 and 8 were deprotected in high yields to the same crystalline tetrol 9.

²) For a discussion of the ambiphilic character of (alkoxy)carbenes, see [10].

Diazirine	Enol ether (equiv.)	Solvent	Temp. [°]	Products (yields [%])	Ratio cyclo- propanes/azines
1	6 (20)	dioxane	45	7 (72)	100: 0
1	6 (22.7)	THF	- 20	7 (71)	100: 0
1	6 (23.3)	THF	-60	7 (72)	100: 0
2	6 (22.5)	dioxane	23	8 (33)	100: 0
1	10 (32.2)	dioxane	45	(Z,Z)-11 (55), 12 (14)	20: 80
1	10 (29)	THF	- 60	(Z,Z)-11 (52), 12 (9)	15: 85
2	10 (32.7)	dioxane	23	(Z,Z)-13 (32), (E,E)-13 (28), 14 (9)	13: 87
1	15 (20.2)	dioxane	45	(Z,Z)-11 (50), 16 (24)	32: 68
1	17 (20)	dioxane	45	(Z,Z)-11 (ca. 80)	0:100
1	18 (20)	dioxane	45	(Z,Z)-11 (ca. 80)	0:100
1	23 (10.3)	dioxane	45	(Z,Z)-11 (62)	0:100
2	23 (10.1)	dioxane	23	(Z,Z)-13 (43), (E,E)-13 (17)	0:100
1	24 (9.3)	dioxane	45	(Z,Z)-11 (47), 25 (11), 26 (4), 27 (1.5)	26: 74
2	24 (9.6)	dioxane	23	(Z,Z)-13 (24), (E,E)-13 (19), 28 (6), 29 (4.5), 31 (2), 30 (1.5)	25: 75

Table 1. Products and Yields of the Reactions of the Diazirines 1 and 2 with Enol Ethers

Thermolysis at 45° of 1 in the presence of a 30-fold excess of the dihydropyran 10 gave selectively the crystalline cyclopropane 12, but only in a yield of 14%. The main product was the (Z,Z)-azine 11 (55%), the dominant product of the thermolysis of 1 in aprotic solvents [22]. Photolytic generation of the carbene at -60° led to a similar result (*Table 1*). The reaction at 23° between 2 and 10 proceeded similarly, but yielded only 9% of the cyclopropane 14. Main products were the (Z,Z)- and (E,E)-azines 13 [22] (32 and 28%, resp.).

Surprisingly, thermolysis of 1 in the presence of the 2,3-dihydro-5-methylfuran 15 yielded only 24% of the crystalline cyclopropane 16. Main product was again the (Z,Z)-azine 11 (55%). Attempts to prepare pseudodisaccharides by the reaction of glycosylidene carbenes with glycals failed; thermolysis of 1 and 20 equiv. of the D-ribal 17 [23] or the D-glucal 18 [24] led only to the formation of the (Z,Z)-azine 11.

The cyclopropane moiety of 7-9, 12, and 14 is revealed by the upfield shift of the NMR signals of H-C(1') (*d* at 3.88-4.24 ppm), H-C(5') of 7-9 (1.41-2.07 ppm), H-C(6') of 12 and 14 (0.81 and 1.16 ppm, resp.), C(1) (*s* at 64.4-68.4 ppm), C(1') (7-9: *d* at 61.2-63.6 ppm; 12 and 14: *d* at 51.3 and 52.15 ppm, resp.), C(5') of 7-9 (*d* at 22.3-25.9 ppm), and C(6') of 12 and 14 (*d* at 14.2 and 14.1 ppm resp.; *Exper. Part* and *Table 5*). Similar upfield shifts are observed for the corresponding signals of 16 (H-C(5'): *d* at 1.26; C(1) and C(1'): 2*s* at 67.5 and 68.4, C(5'): *d* at 27.8 ppm). J(1',5') of the tetrahydrofurans (6.3-6.6 Hz) is smaller than J(1',6') of the tetrahydropyrans (8.1 Hz).

The configuration of the glucopyranosylidene-derived spirocyclopropanes is readily assigned on the basis of nuclear *Overhauser* effects (*Table 2*) between the cyclopropyl H-atoms and either H-C(2), H-C(3), or H-C(5) [6] [7]. Thus, NOEs between the more strongly shielded cyclopropane H-atom and H-C(2), and between the less shielded cyclopropane H-atom, or the Me group of 16 and H-C(3) indicate the *exo*-position of C(2) in 7, 12, 14, and 16 (*Table 2*).

These assignments are corroborated by an X-ray analysis of 7³) (*Fig. 1*). The pyranose ring adopts a ${}^{4}C_{1}$ conformation and the tetrahydrofuran ring is nearly flat, as

³) Coordinates and thermal parameters have been deposited with the *Cambridge Crystallographic Data Center*, 12 Union Road, Cambridge CB2 1EZ, England.

Irradiated at	NOE at	7	16	12	14	25	28	26	29	27	30	31
HCOR ^a)	HCR ^b)	4.2	2.7	4.8		7.2	6.7		7.5	5.7		5.4
HCR ^b)	HCOR [®])	6.9	2.6	7.0	6.5	8.1	8.3		5.8		6.8	
HCR ^b)	H-C(2)	3.6	3.6	3.3	1.1	2.0	2.1					
H - C(2)	HCR ^b)				1.3							
HCOR ^a)	H-C(3)	4.4	2.8	4.0		4.3	2.5					
HC(3)	HCOR ^a)		8.1			2.9	3.6					
HCOR ^a)	H-C(2)							2.9				
HC(2)	HCOR ^a)							2.5	1.4			
HCR ^b)	H-C(3)								1.8			
HC(5)	H-C(1")								5.9			
HC(2)	MeO									1.1		
H-C(3)	H-C(1")									1.9, 2.2		
HC(5)	HCR ^b)									6.3		
HCOR ^a)	H-C(5)											4.0
HC(5)	H-COR ^a)											4.0

Table 2. Selected ¹H-NMR NOEs [%] for the Cyclopropanes 7, 12, 14, 16, and 25-31

^a) Cyclopropane H-atom at lower field; Me group of 16. ^b) Cyclopropane H-atom at higher field.

Fig. 1. X-Ray structure of 7. Some disorder of t-Bu groups.

indicated by the dihedral angles C(1')-O-C(3')-C(4') and O-C(3')-C(4')-C(5') of 4.6 and -5.9° , respectively.

The diastereoselectivity of the cyclopropanation of 6, 10, and 15 – presumably reflecting the larger size of the BnO-C(2) group as compared to the ring O-atom – and the strongly differing reactivity of the cyclic enol ethers prompted us to examine the cyclopropanation of the aliphatic enol ethers 23 and 24 (*Scheme 2*). Several syntheses of these methoxyalkenes are known. They lead to mixtures 23/24 [25-27] or allowed the preparation of pure 23 [28] [29], but not of pure 24. For this reason, we turned to the method of *Earnshaw et al.* [28] where a two step *Horner-Wittig* reaction [30] [31] allows the chromatographic separation of the intermediate diastereoisomeric 2-phosphinoyl-

1886

alkanol oxides (cf. [28] [32] [33]). Base-catalyzed reaction of diphenyl(methoxymethyl)phosphine oxide with heptanal [28] gave the 1-phosphinoyloctan-2-ol 19/20 in a ratio of 52:47. Crystallization from AcOEt yielded pure 19 [28]. The remaining mixture (19/20 43:57) could only be separated by prep. HPLC, whereas the cinnamates 21 and 22 were readily separated by flash chromatography on a 10-g scale. Saponification of 21 and 22 gave pure 19 and 20, and, hence, by treatment with NaH [28], the diastereoisomerically pure (E)- and (Z)-enol ethers 23 [28] [29] and 24, respectively.

The J(1,2) value in the ¹H-NMR of 19 (8.8 Hz) deviates clearly from the J(1,2) value of 21 (2.5 Hz), whereas the corresponding values of 20 and 22 (3.9 and 5.6 Hz, resp.) are similar, evidencing a strong conformational change induced by the acylation of 19, but not of 20 (for convenience, the same numbering is used for 19-22). The large J(1,2) value of 19 together with J(2,OH) of 1.2 Hz agree with an extended zig-zag conformation stabilized by an intramolecular H-bond $OH \cdots O=P$, as depicted in *Scheme 2*. The small J(1,2) value of 21, evidences the depicted sickle conformation. Thus, the energy gain by the intramolecular H-bond of 19 overcompensates the unfavorable antiperiplanar arrangement of the MeO-C(1) and the HO-C(2) substituents and the 1,5-interaction of the HO-C(2) and the O=P substituents. Hence, destruction of the H-bond by acylation induces the observed conformational change. The rather small J(1,2) value of 20 is in keeping with the expected zig-zag conformation. J(2,OH) of 6.3 Hz of 20 indicates a dihedral angle of *ca*. 150° and suggests a bifurcated intramolecular H-bond to the P=O and MeO groups. The minor conformational change observed upon acylation of 20 is in keeping with the favorable *gauche*-arrangement of the MeO and OH groups. The assignment of an extended zig-zag conformation to 19, 20, and 22 and of a sickle conformation to 21 is corroborated by ${}^{3}J(P,C)$ long-range couplings in 19 (8.3 Hz), 20 (6.1 Hz), and 22 (3.8 Hz), but not in 21.

Thermolysis of 1 or 2 in the presence of *ca.* 10 equiv. of the (*E*)-enol ether 23 led almost exclusively to azines: (*Z*,*Z*)-11 and (*Z*,*Z*)- and (*E*,*E*)-13 were isolated in 62, 43, and 17%, respectively (*Table 1*). No trace of cyclopropanes could be detected by ¹H-NMR spectroscopy. The (*Z*)-enol ether 24 proved more reactive than the (*E*)-isomer⁴), and thermolysis of 1 or 2 in the presence of *ca.* 10 equiv. of 24 gave mixtures of azines and cyclopropanes. The azine 11 (47%) and a 56:44 mixture of (*Z*,*Z*)/(*E*,*E*)-13 (43%) were isolated by flash chromatography. Isolation of the cyclopropanes derived from 1 required repeated prep. HPLC and afforded crystalline 25 (11%), 26 (4%), and 27 (1.5%). Again, the yields of cyclopropanes derived from the benzyl-protected diazirine 2 were lower, and 28 (6%), an inseparable mixture 29/30 3:1 (6%), and 31 (2%) were isolated by prep. HPLC.

Characteristic NMR chemical shifts are observed for H-C(2') (0.62-1.44 ppm), H-C(3') (2.79-3.43 ppm), and C(1) (s at 59.7-63.6 ppm) of the methoxycyclopropanes (*Exper. Part* and *Table 5*). J(2',3') of 7.1-8.6 Hz indicates a *cis*-arrangement of the hexyl and the MeO substituent for all compounds (compare with J(1',2') of 3-4 Hz in *trans*-1-alkoxy-2-alkylcyclopropanes [34-36]). Two different sets of products were detected by comparing the chemical-shift values for C(2') and C(3'): on the one hand, **25**, **26**, **28**, and **29** (C(2') at 21.8-22.4 ppm, C(3') at 58.0-59.45 ppm) and, on the other hand, **27**, **30**, and **31** (C(2') at 29.0-30.8 ppm, C(3') at 65.1-66.1 ppm). As discussed above, NOEs between the cyclopropane H-atom and either H-C(2), H-C(3), or H-C(5) (*Table 2*) reveal the *cis*-arrangement of O(5), the alkyl, and the MeO groups, and the same configuration for the main cyclopropanes **25** and **28** as already observed for the addition products to the cyclic enol ethers. A *cis*-arrangement of C(2), the alkyl and the MeO groups is expected for **27**, **30**, and **31** and evidenced by NOEs between the MeO group and H-C(2), both H-C(1'') and H-C(3), and H-C(2') and C(3') is strongly influenced by the relative position of the substituents on the cyclopropane ring rather than by the pseudoequatorial or pseudoaxial orientation of the anomeric *C*-substituents.

⁴) cis-Olefins are usually more reactive in additions to carbene than *trans*-olefins, but the reactivity depends upon the nature and the generation of the carbene [19] [20].

The configurational assignment of the 1-hexyl-2-methoxyspirocyclopropanes is corroborated by the X-ray analysis of 25^3) (*Fig. 2*).

Fig. 2. X-Ray structure of 25

The pyranose ring of the cyclopropanes with *cis*-oriented alkoxy substituents (7-9, 12, 14, 16, 25, 26, 28, and 29) adopts a ${}^{4}C_{1}$ conformation in solution, as it has been observed for the solid state of 7 and 25. In 27, 30, and 31, the hexyl and the MeO groups are *cis* to C(2) and this may lead to unfavorable interactions with RO-C(2). Subtle factors determine the conformational equilibrium of these compounds. Thus, 27 in CDCl₃ (J(2,3) = 8.8, J(3,4) = 9.1, J(4,5) = 9.9 Hz) adopts a ${}^{4}C_{1}$, but 30 in C₆D₆ (J(2,3) = 7.5, J(3,4) = 8.1, $J(4,5) \approx 9.3$ Hz) and especially 31 in C₆D₆ (J(2,3) = 4.8, J(3,4) = 7.5, J(4,5) = 9.8 Hz) deviate increasingly from this conformation. Force-field calculations (Macromodel, MM3* force field, gas phase [37]) indicate that the most probable conformers are the two skew boats ${}^{1}S_{5}$ (calculated J(2,3) = 0.5, J(3,4) = 7.6, J(4,5) = 9.2 Hz) and ${}^{0}S_{2}$ (calculated J(2,3) = 4.4, J(3,4) = 0.5, J(4,5) = 7.4 Hz), equilibrating via the $B_{2,5}$. The J values suggest a *ca*. 4:1 ${}^{4}C_{1}/{}^{1}S_{5}$ equilibrium for 30 and a *ca*. 1:1 equilibrium for 31.

In all these additions to enol ethers, the pivaloyl-protected carbene was clearly more reactive than the benzyl-protected analogue, in keeping with the stronger σ -acceptor properties of the pivaloyloxy group. The most reactive enol ether is the dihydrofuran 6, leading in 71–72% to the pivaloylated cyclopropane 7, but in only 33% to the benzylated analogue 7 (*Table 1*). The main products in all other reactions are the azines 11

and 13. The ratio of cyclopropanes to azines reflects the relative reactivity of the enol ethers and diazirines towards the carbene derived from either 1 or 2. It decreases from dihydrofuran 6 via 2,3-dihydro-5-methylfuran 15, (Z)-methoxyoctene 24, and the dihydropyran 10 to (E)-methoxyoctene 23. The addition of the glycosylidene carbenes derived from 1 and 2 to dimethyl maleate, an electron-poor alkene, was accompanied by partial isomerization to the fumarate [5] [6]. In contrast to this, the addition to 24 was stereospecific; no trace of 23 could be detected in the crude reaction mixtures. The addition is also highly stereoselective.

The cis-arrangement of O-C(1) and the substituents at other cyclopropane centers is expected on the basis of the different size of the two C(1) substituents. The dominant pseudoaxial orientation of the alkoxy substituted cyclopropane C-atom (C(1') in 7, 8, 12, 14, and 16; C(3') in 25 and 28) is more difficult to explain.

The configuration of the cyclopropanes is determined by the axial vs. equatorial approach of the enol ether, its face selectivity and orientation. An approach in the π -plane of the carbenes is assumed for electrophilic carbenes [12] [19] [20] [38]. AM1 Calculation of the frontier-orbital energies of the carbenes C1 and C2 derived from 1 and 2 and the model carbenes C3, C4, and C5 (AMPAC 5.0 program [39]; Fig. 3 and Table 3) shows that the acylated carbenes C1 and C4 possess a lower HOMO and a lower LUMO⁵) than the alkylated carbenes C2, C3, and C5 (ΔE ca. 0.3 and 0.2 eV, resp.). RO-C(6) has a weak influence on the energy of the frontier orbitals. Calculation of the frontier-orbital energies of the enol ethers 15, 6, 10, 24, and E shows that the HOMO of the 2,3-dihydro-5-methylfuran 15 is lower in energy than the HOMO of the other enol ethers and that the LUMO of the dihydrofurans 15 and 6 is lower than the LUMO of 10, 24, and E (ca. 0.15–0.2 eV). The p_z coefficients of the enol ethers at C(α) and C(β) are not very different from each other, and somewhat larger at $C(\beta)$ of the HOMO and at C(α) of the LUMO. The $\Delta E_{\rm E}$ values [10] (*Table 3*) for these carbons and enol ethers are smaller than the $\Delta E_{\rm N}$ values (E, electrophilic interaction; N, nucleophilic interaction). This is in keeping with the assumption that the reaction is initiated by a dominant electrophilic interaction between the carbenes and the enol ethers. The $\Delta E_{\rm F}$ values for the acylated carbenes C1 and C4 are somewhat smaller than the $\Delta E_{\rm E}$ values for the alkylated carbenes C2, C3, and C5 and indicate a higher electrophilic character of C1 and C4⁶). The $\Delta E_{\rm N}$ values for the interaction of the carbones and the parent diazirines⁵) (C1 and 1, C2 and 2) show that azine formation is competitive with the addition to the enol ethers, and more so for the benzylated than for the pivaloylated carbene. This means that the lower yields of the cyclopropanes obtained from the O-benzylated carbene is the result of the higher reactivity of this carbene towards the starting diazirine 2 and not of the lowered electrophilicity relative to the pivaloylated carbene. This is corroborated by

⁵) For C2, the lowest unoccupied orbital localized at the carbenic center corresponds to LUMO⁺⁷. For 2, the highest occupied orbital localized at the diazirine moiety corresponds to HOMO⁻¹⁰. The electron density of the molecular orbitals LUMO to LUMO⁺⁶ of C2 and of HOMO to HOMO⁻⁹ of 2 is mainly localized at the Ph groups.

⁶) The $\Delta E_{\rm E}$ and $\Delta E_{\rm N}$ values for the dihydrofuran 6 and the dihydropyran 10 are very similar and suggest a similar reactivity, in contradiction to the experimental observations, reflecting either the limitation of this factor and/or of the calculations.

Fig. 3. a) AM1 Calculation for carbenes and acyclic enol ethers (starting geometries depicted); b) AM1 calculated transition states for the addition of C5 to E leading to cis-dialkoxycyclopropanes

the calculations of the transition states for the addition of glycosylidene carbenes to enol ethers.

To evaluate the transition states, we calculated the ground-state structure of the products of the addition of 6-deoxy-2,3,4-tri-O-methyl-D-glucopyranosylidene (C5) to (Z)-1-methoxyprop-1-ene (E), viz. the two cis-dialkoxycyclopropanes corresponding to 28 and 29 and the energies associated with systematic lengthening of both the $C(1) \cdots C(\alpha)$ and $C(1) \cdots C(\beta)$ bonds. Four transition states (TS1-TS4 in Fig. 3 and

HELVETICA CHIMICA ACTA - Vol. 80 (1997)

Table 3. AM1 Calculations [39] of the Frontier-Orbital Energies of the Carbenes $C1-C5^{a}$), the Enol Ethers 6,	10,
15, 24, and E^{b}), and the Diazirines 1 and 2: a) Energies of HOMO and LUMO of Carbenes and Diaziri	ines
and Selected LUMO p. Coefficients; b) Energies of HOMO and LUMO and Selected p. Coefficients	of
Enol Ethers; c) Differential Frontier-Orbital Energies ($\Delta E_{\rm E} = {\rm LUMO}_{\rm carbene} - {\rm HOMO}_{\rm carbenophile}$; $\Delta E_{\rm N}$	- -
LUMO _{carbenophile} – HOMO _{carbene}) for Carbene/Enol Ether or Carbene/Diazirine Additions	

	HOMO [eV]	LUMO [eV]	p _z coefficients of LUMO at		
	C(1)	O(5)			
C1	- 9.356	0.408	0.79	- 0.37	
C2	- 9.012	0.623 ⁵)	0.78	- 0.37	
C3	- 8.973	0.724	0.83	- 0.39	
C4	- 9.344	0.411	0.79	- 0.37	
C5	- 9.041	0.624	0.85	- 0.40	
1	- 10.907	- 0.241			
2	-10.888^{5})	- 0.057			

a)

b)

	HOMO [eV]	LUMO [eV]	p, coeffic	ients of HO	MO at	p_z coefficients of LUMO at			
			C(β)	C(α)	0	<u>C</u> (β)	C(α)	0	
15	- 8.924	1.150	- 0.65	- 0.46	0.43	0.63	- 0.69	0.19	
6	- 9.120	1.193	- 0.63	- 0.47	0.47	0.63	- 0.71	0.21	
10	- 9.139	1.319	- 0.69	- 0.49	0.46	0.62	- 0.69	0.20	
24	- 9.060	1.385	- 0.62	- 0.52	0.45	0.66	- 0.69	0.18	
E	- 9.042	1.389	- 0.63	- 0.52	0.46	0.66	- 0.69	0.19	

c)

Carbene	Carbenophile	$\Delta E_{\rm E}$ [eV]	$\Delta E_{\rm N} [{\rm eV}]$	$\Delta E_{\rm N} - \Delta E_{\rm E}$ [eV]
 C1	15	9.33	10.51	1.18
C1	6	9.53	10.55	1.02
C1	10	9.55	10.67	1.12
C2	6	9.74	10.21	0.47
C2	10	9.76	10.33	0.57
CI	24	9.47	10.74	1.27
C2	24	9.68	10.40	0.72
C3	24	9.78	10.36	0.58
C4	24	9.47	10.73	1.26
C5	24	9.68	10.53	0.75
C5	E	9.67	10.43	0.76
C1	1	11.32	9.12	- 2.20
C2	2	11.51	8.96	- 2.55

^a) The starting geometry (⁴ H_3 , syn-periplanar arrangement of the HCOR groups, gg conformation around C(5)-C(6) of C1-C3 was optimized without systematic checking for local minima. ^b) Anti-periplanar arrangement of C(β)C(α)OMe in the starting geometry of 24 and E.

Table 4) were detected 7). TS1 and TS2 lead to the major and TS3 and TS4 to the minor product. TS1 and TS3 result from an equatorial, and TS2 and TS4 from an axial attack of the enol ether. All transition states are characterized by two incipient C-C bonds of very unequal length, with a shorter pseudoequatorial C-C bond. TS1 and TS4 show a short $C(1)-C(\alpha)$ and **TS2** and **TS3** a short $C(1)-C(\beta)$ bond. In so far as the incipient bond correlates with the energy of the orbital interaction, these bond lengths express a dominant interaction of the HOMO of the carbenes with the LUMO of the enol ethers, with a dominant interaction with $C(\alpha)$ (larger coefficient) in **TS1** and **TS4**, and with $C(\beta)$ (smaller coefficient) in TS2 and TS3. In agreement with this difference, the calculated ΔG^* values are smaller (and quite similar) for TS1 and TS4 than for TS2 and TS3. The ${}^{4}H_{3}$ conformation of the isolated carbene was changed in the transition states to conformations close to ${}^{4}E$; *i.e.*, a ${}^{4(3)}SB$ [40] (between ${}^{4}E$ and ${}^{1}S_{5}$) for an equatorial attack and a flat ${}^{4}C_{1}$ for an axial attack. This conformational difference is too weak to have a dominant influence upon the direction of the attack, but indicates that the pyranose ring of the cyclopropane obtained by equatorial attack adopts a boat conformation (${}^{1}S_{5}$ from **TS1**) and the one obtained by axial attack a chair conformation (${}^{4}C_{1}$ from **TS2**).

A similar calculation for the addition of the triacetoxycarbene C4 to the enol ether E leads to the four transition states TS5-TS8, closely analogous to TS1-TS4, and the energies indicated in *Table 4*. The transition states TS5 and TS8 correspond to TS1 and TS4, but possess a ${}^{4}E$ instead of ${}^{4(3)}SB$ conformation, and are clearly preferred, again indicating a dominant contribution of the HOMO_{carbene}/LUMO_{enol ether} interaction. The

Table 4. AM1 Calculations [39] of the Transition States for the Addition of C5 or C4 to (Z)-1-Methoxyprop-1-ene (\mathbb{E}) Leading to cis-Dialkoxycyclopropanes^a)

	Addition of C5 to E				Addition of C4 to E			
Transition state	TSI	TS2	TS3	TS4	TS5	TS6	TS7	TS8
Distance $C(1) \cdots C(\beta)$ [Å]	2.34	1.87	1.87	2.31	2.34	1.87	1.87	2.32
Distance $C(1) \cdots C(\alpha)$ [Å]	1.87	2.38	2.41	1.87	1.87	2.38	2.39	1.87
Ring conformation	4(3)SB [40]	flat 4C_1	⁴⁽³⁾ SB	flat 4C_1	⁴ E	flat 4C_1	⁴ <i>E</i>	flat 4C_1
Direction of attack	eq.	ax.	eq.	ax.	eq.	ax.	eq.	ax.
Final energy [kcal/mol]	- 140.9	- 139.8	- 138.4	4 - 141.3	- 266.8	- 264.8	- 264.9	- 266.4
$\Delta G^{\#}$ [kcal/mol] ^b)	14.2	15.3	16.7	13.8	12.4	14.4	14.3	12.8

^a) Similar starting geometry as for C5, *anti*-periplanar arrangement of $C(\beta)C(\alpha)OMe$. ^b) Referred to the sum (-155.1 and -279.2 kcal/mol, resp.) of the final energies of C5 (-120.3 kcal/mol) or C4 (-244.4 kcal/mol) and E (-34.8 kcal/mol).

⁷) Conformers near the transition states were obtained minimizing conformers with a fixed distance of 1.87 Å between C(1) and the 'pseudoequatorial' olefinic C-atom and a starting distance of > 2.2 Å between C(1) and the 'pseudoequatorial' olefinic C-atom. For TS1-TS4, lengthening of this distance between C(1) and the 'pseudoequatorial' olefinic C-atom leads to decrease of the energy and increased distances between C(1) and the 'pseudoexial' olefinic C-atom, whereas shortening of this distance to 1.82 Å leads to decrease of the energy accompanied by C-C bond formation between C(1) and the 'pseudoexial' olefinic C-atom. In the transition states, the p and the sp² orbital of the carbene and the π orbital of the carbene and the c-C bond are in the same plane. The doubly occupied sp² orbital of the carbene and the C-C bond of the enol ether deviate by *ca.* 45° from a parallel orientation.

lower ΔG^{*} values for TS5 and TS8 than for TS1 and TS4 are in keeping with the higher yields obtained in the addition of the pivaloylated 1 to the enol ethers.

The lower yields of the addition to the 2,3-dihydro-5-methylfuran 15 is not the result of an electronic, but of a steric factor: equatorial addition of 15 to the carbene derived from 1 and leading to 16 (*via* a transition state analogous to TS5) involves an unfavorable interaction between the methyl substituent of 15 and the PivO-C(2).

We thank Dr. A. Linden, University of Zürich, for the X-ray analyses, and the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for generous support.

Experimental Part

General. See [6]. HPLC: t_R in min.

(1R, 1'S, 5'R)-2,3,4,6-Tetra-O-pivaloylspiro[1,5-anhydro-D-glucitol-1,6'-[2]oxabicyclo[3.1.0]hexane] (7). a) A soln. of 6 (2.4 ml, 32.28 mmol) in 1,4-dioxane (5 ml) was heated under N₂ to 45°, treated dropwise with a cooled (0°) soln. of 1 [22] (850 mg, 1.61 mmol) in 1,4-dioxane (5 ml), and stirred for 2 h. Evaporation and prep. HPLC (hexane/Et₂O 4:1, 14 ml/min) of the residue (770 mg) gave 7 (661 mg, 72%; $t_{\rm R}$ 6.5) which afforded colorless needles from MeOH.

b) A soln. of 6 (13 ml, 17.25 mmol) in abs. THF (2 ml) was cooled under N₂ to -20° , treated dropwise with a cooled (0°) soln. of 1 (400 mg, 0.76 mmol) in abs. THF (2 ml), and irradiated (Hg lamp with *Solidex* filter) for 90 min. Evaporation and FC (hexane/AcOEt 2:1) gave 7 (305 mg, 71%).

c) As b), but at -60° with 1 (390 mg, 0.74 mmol) and 6 (1.3 ml, 17.25 mmol): 7 (304 mg, 72%). M.p. 167° (MeOH). $R_{\rm f}$ (hexane/Et₂O 1:2) 0.66. $[\alpha]_D^{25} = +70.8$ (c = 1.11, CHCl₃). IR (KBr): 2980m, 2940m (sh), 2900w, 2880w, 1740s, 1730s (sh), 1480m, 1460w, 1400w, 1365w, 1285m, 1180s (sh), 1150s, 1115m (sh), 1100m, 1090m (sh), 1035*m*, 890*w*, 760*w*. ¹H-NMR (400 MHz, C_6D_6): 5.59 (*d*, J = 9.0, H-C(2)); 5.55 (*t*, $J \approx 8.9$, H-C(3)); 5.44 (dd, J = 8.7, 10.1, H-C(4)); 4.35 (dd, J = 1.3, 12.6, H-C(6)); 4.02 (dd, J = 5.0, 12.6, H'-C(6)); 3.96-200 (dd, J = 5.0, H'-C(6)); 3.96-200 (dd, J3.85 (m, 2 H-C(3')); 3.88 (d, J = 6.3, H-C(1')); 3.82 (ddd, J = 1.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3, H-C(5)); 1.88 (br. ddd, J = 5.4, 5.0, 10.3,8.2, 12.0, irrad. at $3.88 \rightarrow d, J = 12.0, H-C(4')$; $1.73-1.62 (m, irrad. at <math>3.88 \rightarrow dd, J = 6.8, 12.0 H'-C(4')$; 1.41 (t, $J \approx 6.5$, irrad. at 3.88 $\rightarrow d$, J = 6.9, H–C(5')); 1.19, 1.16, 1.16, 0.99 (4s, 4 t-Bu). ¹H-NMR (400 MHz, $CDCl_{3}$: 5.37-5.29 (AB, irrad. at 4.02 \rightarrow NOE (4.4%), irrad. at 1.60 \rightarrow NOE (3.6%), H-C(2), H-C(3)); 5.23-5.14 (m, with virtual coupling, irrad. at $3.76 \rightarrow$ change, H-C(4)); 4.21 (dd, J = 1.6, 12.6, irrad. at $3.76 \rightarrow d, J = 12.3, H-C(6)$; $4.15 (ddd, J = 5.2, 7.6, 9.2, irrad. at <math>2.18 \rightarrow d, J = 8.2, H-C(3')$; 4.02 (d, J = 6.5, 1.5)irrad. at 1.60 \rightarrow s, irrad. at 1.60 \rightarrow NOE (6.9%), H-C(1')); 3.97 (q, J = 7.9, irrad. at 2.18 \rightarrow d, J \approx 7.5, H' - C(3'); 3.94 (dd, $J = 5.3, 12.5, irrad. at 3.76 \rightarrow d, J = 12.5, H' - C(6)$; 3.76 (ddd, J = 1.6, 5.3, 10.2, H - C(5)); 2.26-2.12 (m, irrad. at 1.60 \rightarrow change, irrad. at 1.60 \rightarrow NOE (2.3%), 2H-C(4')); 1.60 (dt, J = 1.2, 6.3, irrad. at $2.18 \rightarrow d, J = 6.4$, irrad. at $4.02 \rightarrow \text{NOE} (4.2\%), H-C(5')$; 1.22, 1.15, 1.12, 1.11 (4s, 4 t-Bu). ¹³C-NMR (50 MHz, C₆D₆): Table 5; additionally, 177.45, 176.88, 176.38, 176.04 (4s, 4C=O); 76.75 (d); 38.89, 38.85, 38.80, 38.69 (4s, 4 Me₃C); 27.36, 27.27, 27.19, 27.04 (4q, 4 Me₃C). CI-MS: 587 (32), 586 (100, [M + NH₄]⁺), 366 (8), 367 (36), 367 ((38), 346 (8), 323 (6), 263 (7). Anal. calc. for $C_{30}H_{48}O_{10}$ (568.71): C 63.36, H 8.51; found: C 63.59, H 8.39.

X-Ray Analysis of 7. Crystals were obtained from MeOH. $C_{30}H_{48}O_{10}$ (568.7); orthorhombic $P2_{12}1_{21}$; a = 17.677(2), b = 28.196(3), c = 6.503(1) Å; V = 3241.1(8) Å³; $D_x = 1.165 \text{ Mg/m}^3$; Z = 4. Intensities were measured in the ω -scan mode on an Rigaku-AFC5R diffractometer (graphite monochromator, MoK_x, $\lambda = 0.71069$ Å) at 173 K, $2\Theta_{(max)} = 55^{\circ}$, scan speed of 4°/min in ω , scan width (1.21 + 0.35 tan Θ)°. Of the 5133 total collected reflections, 4971 unique reflections were observed. R = 0.0526, $R_w = 0.0438$. The structure was solved with the direct-methods routine of SHELXS-86 [41]. The non-H-atoms were refined anisotropically. All calculations were performed using the TEXSAN crystallographic software package of Molecular Structure Corporation [42].

(1R, 1'S, 5'R)-2,3,4,6-Tetra-O-benzylspiro[1,5-anhydro-D-glucitol-1,6'-[2]oxabicyclo[3.1.0]hexane] (8). A suspension of 6 (2 ml, 26.54 mmol) and 4 Å-molecular sieves (1.0 g) in abs. 1,4-dioxane (5 ml) was treated slowly at 23° with a cooled (0°) soln. of 2 [43] (650 mg, 1.18 mmol) in abs. 1,4-dioxane (5 ml), stirred for 2.5 h, and filtered through Celite (washing several times with CH₂Cl₂). Evaporation, FC (hexane/Et₂O 2:1), and prep. HPLC (hexane/AcOEt 2:1, 14 ml/min) gave 8 (233 mg, 33%; t_{R} 11.0). Colorless foam. R_{t} (hexane/AcOEt 1:1) 0.71. $[\alpha]_{D}^{25} = +55.4$ (c = 1.15, CHCl₃). IR (CHCl₃): 3050w, 3020w (br.), 3000w, 2950w, 2930w, 2920w (sh), 2900w, 2880w, 2860w, 1495m, 1450m, 1400w (br.), 1360m, 1315w (br.), 1240m, 1200w, 1150m, 1110s, 1090s, 1060s (sh), 1025s, 960w, 920w (br.), 810w, 790-700w (br.), 700s, 665w, 650w. ¹H-NMR (600 MHz, C₆D₆; assignment based

7 8 9') 9' 16 12 14 C11 64.47 65.76 68.34 65.39 68.39 ^b) 60.35 61.21 C(2) 68.65 ^b 79.70 ^b) 72.66 70.22 ^b) 69.22 ^c) 68.77 ^b) 79.43 ^b) C(3) 76.75 87.62 79.65 77.73 77.55 75.84 ^c) 87.54 C(4) 69.04 ^b) 79.51 ^b) 22.33 80.28 73.71 74.41 ^c) 77.55 C(6) 62.42 69.86 63.56 61.25 67.51 ^b) 51.33 52.15 C(3) 73.27 73.36 75.86 71.52 72.21 64.62 64.64 C(4) 25.24 25.77 27.09 24.87 26.49 14.46 15.06 C(7) 24.41 24.43 25.91 22.38 27.08 7.40 103.31 107.00 Solvent CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ CDC				- 1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Solvent	7 C.D.	8 C.D.	9") D.O	y (D_)DMSO	16 C.D.	12 C.D.	14 C.D.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				220	(6)	-6-6	-6-6	-6-0
C(2) 68.65°) 79.70°) 72.66 70.22°) 69.22°) 68.77°) 79.43°) C(3) 76.75 87.62 79.65 77.73 77.55 75.84°) 87.54 C(4) 69.04°) 79.51°) 72.93 70.67°) 69.43°) 68.92°) 79.37°) C(5) 74.25 78.70°) 82.33 80.28 73.71 74.41°) 77.55°) C(6) 62.42 69.86 63.56 61.38 62.66 62.65 69.78 C(11) 61.29 62.64 63.56 61.25 67.51°) 51.33 52.15 C(3) 73.27 73.36 75.86 71.52 72.21 64.62 64.69 C(4) 25.24 25.77 27.09 24.87 26.49 14.46 15.06 C(5) 24.11 24.43 25.91 22.38 27.80 22.69 23.09 C(6) $ -$ 14.17 14.10 Me $ -$ 15.98 $ -$ CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ CDCl ₃ C(11) 83.52 (85.7) 83.47 (85.3) 82.70 (87.3) 83.19 (86.2) 146.95 145.90 C(2) 71.24 (4.3) 70.83 (3.6) 73.21 (5.3) 72.58 (7.0) 103.35 107.20 C(3) 33.11 (8.3) 33.59 (6.1) 29.99 30.79 (3.8) 27.66 23.83 C(4) 25.05 25.50 25.49 24.98 30.76 29.76 C(5) 29.02 28.66 28.50 28.47 28.69 28.91 C(6) 31.48 31.34 31.26 31.16 31.73 31.70 C(7) 22.29 22.23 22.21 22.15 22.63 22.61 C(8) 13.80 13.75 13.74 13.69 14.06 14.02 C(2) 13.80 13.75 61.37 61.34 61.78 63.60 62.72 C(2) 61.60 (5.9) 61.20 (5.6) 60.62 (9.0) 62.14 (4.1) 55.89 59.38 C(3) 73.61 (5.77) 73.65° 87.60 87.20 85.99 86.18 C(4) 66.81° 68.85° 66.83° 67.61° 79.37° 79.37° 79.38° 79.38° 79.38° 73.20° C(5) 73.61 13.80 13.75 13.74 13.69 14.06 14.02 MeO 61.60 (5.9) 61.20 (5.6) 60.62 (9.0) 62.14 (4.1) 55.89 59.38 C(3) 73.61° 73.08° 73.29° 79.35° 79.38° 79	C(1)	64.47	65.76	68.34	65.39	68.39°)	60.35	61.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	68.65°)	79.70°)	72.66	70.22°)	69.22°)	68.77°)	79.43°)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	76.75	87.62	79.65	77.73	77.55	75.84°)	87.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	69.04 ^b)	79.51 [•])	72.93	70.67 °)	69.43°)	68.92°)	79.37°)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	74.25	78.70°)	82.33	80.28	73.71	74.41 °)	77.55°)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	62.42	69.86	63.56	61.38	62.66	62.65	69.78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1')	61.29	62.64	63.56	61.25	67.51°)	51.33	52.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3')	73.27	73.36	75.86	71.52	72.21	64.62	64.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4′)	25.24	25.77	27.09	24.87	26.49	14.46	15.06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5')	24.11	24.43	25.91	22.38	27.80	22.69	23.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(6')		-	-	-		14.17	14.10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Me		-			15.98	-	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u></u>				<u></u>	· · · · · · · · · · · · · · · · · · ·	······	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		19°)	20 °)		21 ^e) ^f)	22 ^e) ^f)	23	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Solvent	CDCl ₃	CDCl ₃		CDCl ₃	CDCl ₃	CDCl ₃	CDCl ₃
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	83.52 (85.7)	83.47 (85	5.3)	82.70 (87.3)	83.19 (86.2)	146.95	145.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	71.24 (4.3)	70.83 (3.	.6) '	73.21 (5.3)	72.58 (7.0)	103.35	107.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	33.11 (8.3)	33.59 (6.	.1) :	29.99	30.79 (3.8)	27.66	23.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	25.05	25.50	:	25.49	24.98	30.76	29.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	29.02	28.68		28.50	28.47	28.69	28.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	31.48	31.34	:	31.26	31.16	31.73	31.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	22.29	22.23		22.21	22.15	22.63	22.61
MeO61.60 (5.9)61.20 (5.6)60.62 (9.0)62.14 (4.1)55.8959.38SolventCDCl3CDCl3CDCl3CDCl3CDCl3CDCl3CDCl3CDCl3CDCl3CCC(1)59.7460.2461.5761.3461.7863.6062.72C(2)68.56 ^b 68.35 ^b 67.61 ^b 79.47 ^b 79.37 ^b 79.87 ^b 78.36 ^b C(3)75.22 ^c 75.47 ^c 73.65 ^c 87.6087.2085.9986.18C(4)68.91 ^b 68.89 ^b 69.00 ^b 79.35 ^b 79.38 ^b 78.90 ^b 78.00 ^b C(5)73.61 ^c 73.08 ^c 73.29 ^c 79.05 ^b 79.24 ^b 76.16 ^b 75.94 ^b C(6)62.4262.5762.1169.3969.4669.9569.93C(2')22.0821.8029.0722.3921.8529.8430.81C(3')58.0758.1865.1559.4558.7166.0965.32C(1'')19.5320.1521.2120.5821.1922.2622.18C(2'')29.22 ^d 29.83 ^d 30.35 ^d 30.19 ^c 30.6 ^c 30.14 ^c 29.74 ^c C(4'')31.5931.7231.7332.2332.1932.0932.12C(4'')31.5931.7231.7332.2332.1932.0932.12C(5'')22.5622.5822.6023.0723.03 ^h 23.01C(6'')14.0013.9614.0214.25 ^h </td <td>C(8)</td> <td>13.80</td> <td>13.75</td> <td></td> <td>13.74</td> <td>13.69</td> <td>14.06</td> <td>14.02</td>	C(8)	13.80	13.75		13.74	13.69	14.06	14.02
25262728 29^{f})* 30^{e}) 31 SolventCDCl3CDCl3CDCl3 $C_{6}D_{6}$ $C_{6}D_{6}$ $C_{6}D_{6}$ $C_{6}D_{6}$ C(1) 59.74 60.24 61.57 61.34 61.78 63.60 62.72 C(2) 68.56^{b} 68.35^{b} 67.61^{b} 79.47^{b} 79.37^{b} 79.87^{b} 78.36^{b} C(3) 75.22^{e} 75.47^{e} 73.65^{e} 87.60 87.20 85.99 86.18 C(4) 68.91^{b} 68.89^{b} 69.00^{b} 79.35^{b} 79.38^{b} 78.90^{b} 78.00^{b} C(5) 73.61^{e} 73.08^{e} 73.29^{e} 79.05^{b} 79.24^{b} 76.16^{b} 75.94^{b} C(6) 62.42 62.57 62.11 69.39 69.46 69.95 69.93 C(2') 22.08 21.80 29.07 22.39 21.85 29.84 30.81 C(3') 58.07 58.18 65.15 59.45 58.71 66.09 65.32 C(1'') 19.53 20.15 21.21 20.58 21.19 22.26 22.18 C(2'') 29.24^{d} 29.23^{d} 29.89^{e} 30.06^{e} 30.14^{e} 29.74^{e} C(4'') 31.59 31.72 31.73 32.23 32.19 32.09 32.12 C(5'') 22.56 22.58 22.60 23.07 23.03 h 23.01 C(6'') 14.00 13.96 14.02 <td>MeO</td> <td>61.60 (5.9)</td> <td>61.20 (5.</td> <td>.6)</td> <td>60.62 (9.0)</td> <td>62.14 (4.1)</td> <td>55.89</td> <td>59.38</td>	MeO	61.60 (5.9)	61.20 (5.	.6)	60.62 (9.0)	62.14 (4.1)	55.89	59.38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	26	27	28	29 ^f) ^g)	30 ^g)	31
C(1) 59.74 60.24 61.57 61.34 61.78 63.60 62.72 C(2) 68.56^{b}) 68.35^{b}) 67.61^{b}) 79.47^{b}) 79.37^{b}) 79.87^{b}) 78.36^{b})C(3) 75.22^{c}) 75.47^{c}) 73.65^{c}) 87.60 87.20 85.99 86.18 C(4) 68.91^{b}) 68.89^{b}) 69.00^{b}) 79.35^{b}) 79.38^{b}) 78.90^{b}) 78.00^{b})C(5) 73.61^{c}) 73.08^{c}) 73.29^{c}) 79.05^{b}) 79.24^{b}) 76.16^{b}) 75.94^{b})C(6) 62.42 62.57 62.11 69.39 69.46 69.95 69.93 C(2') 22.08 21.80 29.07 22.39 21.85 29.84 30.81 C(3') 58.07 58.18 65.15 59.45 58.71 66.09 65.32 C(1'') 19.53 20.15 21.21 20.58 21.19 22.26 22.18 C(2'') 29.22^{d}) 29.83^{d}) 30.35^{d}) 30.06^{c}) 30.14^{c}) 29.74^{c})C(4'') 31.59 31.72 31.73 32.23 32.19 32.09 32.12 C(5'') 22.56 22.58 22.60 23.07 23.03 h) 23.01 C(6'') 14.00 13.96 14.02 14.29 14.25 h) 14.25 MeO 59.08 58.94 59.19 <	Solvent	CDCl ₃	CDCl3	CDCl3	C_6D_6	C_6D_6	C_6D_6	C_6D_6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	59.74	60.24	61.57	61.34	61.78	63.60	62.72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	68.56 ^b)	68.35 ^b)	67.61 ^b)	79.47 ^b)	79.37 ^b)	79.87 ^b)	78.36 ^b)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	75.22°)	75.47°)	73.65°)	87.60	87.20	85.99	86.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	68.91 ^b)	68.89 ^b)	69.00 ^b)	79.35 ^b)	79.38 ^b)	78.90 ^b)	78.00 ^b)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	73.61°)	73.08°)	73.29°)	79.05 ^b)	79.24 ^b)	76.16 ^b)	75.94 ^b)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	62.42	62.57	62.11	69.39	69.46	69.95	69.93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2')	22.08	21.80	29.07	22.39	21.85	29.84	30.81
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3')	58.07	58.18	65.15	59.45	58.71	66.09	65.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1")	19.53	20.15	21.21	20.58	21.19	22.26	22.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2'')	29.22 ^d)	29.83 ^d)	30.35 ^d)	30.19°)	30.56°)	31.10°)	30.14°)
C(4") 31.59 31.72 31.73 32.23 32.19 32.09 32.12 C(5") 22.56 22.58 22.60 23.07 23.03 h) 23.01 C(6") 14.00 13.96 14.02 14.29 14.25 h) 14.25 MeO 59.08 58.94 59.19 58.95 59.57 h) 58.85	C(3'')	29.11 ^d)	29.42 ^d)	29.23 ^d)	29.89°)	30.06°)	30.14°)	29.74°)
C(5") 22.56 22.58 22.60 23.07 23.03 h) 23.01 C(6") 14.00 13.96 14.02 14.29 14.25 h) 14.25 MeO 59.08 58.94 59.19 58.95 59.57 h) 58.85	C(4")	31.59	31.72	31.73	32.23	32.19	32.09	32.12
C(6'') 14.00 13.96 14.02 14.29 14.25 h) 14.25 MeO 59.08 58.94 59.19 58.95 59.57 h) 58.85	C(5")	22.56	22.58	22.60	23.07	23.03	^h)	23.01
MeO 59.08 58.94 59.19 58.95 59.57 ^h) 58.85	C(6")	14.00	13.96	14.02	14.29	14.25	h)	14.25
	MeO	59.08	58.94	59.19	58.95	59.57	^h)	58.85

Table 5. Selected ¹³C-NMR Chemical Shifts [ppm] of 7-9, 12, 14, 16, and 19-31

^a) Assignment based on a ¹H,¹³C-COSY spectrum. ^b) ^c) ^d) Assignment may be interchanged. ^e) J(C,P) [Hz] in parenthesis. ^f) Same numbering as for 19. ^g) Data from 29/30 3:1. ^h) Hidden by other signals.

on a COSY-DQF spectrum): 7.31–7.23 (*m*, 4 arom. H); 7.23–7.05 (*m*, 16 arom. H); 4.90 (*d*, J = 11.4), 4.82 (*d*, J = 11.3), 4.77 (*d*, J = 11.3), 4.65 (*d*, J = 11.5), 4.64 (*d*, J = 11.3), 4.46 (*d*, J = 12.2), 4.34 (*d*, J = 12.8), 4.31 (*d*, J = 11.7, 8 PhCH); 4.24 (*d*, J = 6.5, H–C(1')); 4.11 (*t*, J = 8.2, H–C(3')); 4.08 (*dt*, $J \approx 4.8$, 9.0, H'–C(3')); 3.87 (br. *dd*, $J \approx 4.0$, 9.5, H–C(5)); 3.85 (*t*, J = 9.5, H–C(4)); 3.81 (*t*, $J \approx 8.8$, H–C(3)); 3.73 (*d*, J = 8.7, H–C(2)); 3.71 (*dd*, J = 4.1, 10.9, H–C(6)); 3.66 (*dd*, J = 1.3, 10.7, H'–C(6)); 2.09 (*ddd*, J = 4.8, 8.5, 11.9, H–C(4')); 1.88 (*tdd*, $J \approx 7.1$, 9.7, 11.9, H'–C(4')); 1.77 (*t*, J = 6.5, H–C(5')). ¹³C-NMR (50 MHz, C₆D₆): *Table 5*; additionally, 139.69, 139.47, 139.14, 138.96 (4s); 128.86–127.76 (several *d*); 75.67, 75.19, 75.07, 73.49 (4*t*, 4 PhCH₂). CI-MS: 612 (11), 611 (47), 610 (100, [M + NH₄]⁺). Anal. calc. for C₃₈H₄₀O₆ (592.74): C 77.00, H 6.80; found: C 77.17, H 6.65.

(1R, 1'S, 5'R)-Spiro[1,5-anhydro-D-glucitol-1,6'-[2]oxabicyclo[3.1.0]hexane] (9). a) From 7: A suspension of 7 (250 mg, 1.07 mmol) in 1,4-dioxane/H₂O 1:1 (12 ml) was treated with 40% Bu₄NOH in H₂O (2 ml), stirred for 6 d at 23°, neutralized with *Dowex CCR-2* (H⁺ form), and filtered. Evaporation of the filtrate, two FC (AcOEt/MeOH 3:1 and CH₂Cl₂/MeOH 4:1), and crystallization from MeOH/AcOEt gave 9 (84 mg, 82%) as colorless needles.

b) From 8: A suspension of 8 (10 mg, 0.017 mmol) and Pd(OH)₂/C (18 mg) in MeOH (15 ml) was stirred under H₂ for 5 h and filtered through Celite. Evaporation and FC (CH₂Cl₂/MeOH 4:1) gave 9 (3.8 mg, 97%). M.p. 177° (MeOH/AcOEt). R_f (AcOEt/MeOH 1:1) 0.64, R_f (CH₂Cl₂/MeOH 4:1) 0.36. $[\alpha]_D^{25} = +104.8$ (c = 1.01, MeOH). IR (KBr): 3600-3160s (br.), 3070m, 2980m, 2960m, 2930m (sh), 2900s (br.), 1450m, 1420s (br.), 1380w, 1365w, 1345w, 1335m (sh), 1330m (sh), 1310w, 1260m (sh), 1250s (sh), 1240s, 1205m, 1170w, 1130s (sh), 1120s, 1100s (sh), 1090s, 1065s, 1030s, 1010s, 990m, 960m, 920m, 890w, 875m, 850m, 760w, 730m, 710-660m (br.), 645m, 615*m*. ¹H-NMR (600 MHz, D₂O): 4.17 (*ddd*, J = 4.5, 7.7, 9.9, H-C(3')); 4.05 (*d*, J = 6.6, H-C(1')); 3.96 (br. q, J = 8.1, H'-C(3')); 3.87 (dd, J = 2.2, 12.6, irrad. at $3.35 \rightarrow d, J = 12.5, H-C(6)$); 3.705 (d, J = 8.9, 1.5, H'-C(5)); 3.705 (d, J = 8.9, 1.5, H'-C(5)) H-C(2); 3.697 (dd, J = 5.9, 12.6, irrad. at $3.35 \rightarrow d, J = 12.5, H'-C(6)$; 3.51 (t, J = 9.0, H-C(3)); 3.45 (t, $J \approx 9.4$, irrad. at 3.35 \rightarrow br. d, $J \approx 9.5$, H-C(4)); 3.35 (ddd, J = 2.3, 5.8, 9.7, H-C(5)); 2.30 (tdd, $J \approx 7.4$, 9.8, 12.4, H-C(4'); 2.11 (*dd*, J = 4.4, 8.8, 12.3, H'-C(4')); 2.07 (t, J = 6.6, H-C(5')). ¹H-NMR (400 MHz, (D_{6}) DMSO): 4.85 (d, J = 4.6, exchange with D₂O, OH); 4.83 (d, J = 5.3, exchange with D₂O, OH); 4.82 (d, J = 5.2, exchange with D₂O, OH); 4.38 (t, J = 5.8, exchange with D₂O, HO-C(6)); 3.93 (dt, J = 4.0, 7.2, H-C(3'); 3.88 (t, $J \approx 7.8$, H'-C(3')); 3.76 (d, J = 6.3, H-C(1')); 3.62 (br. dd, J = 5.5, 11.1, addn. of $D_2O \rightarrow br$. d, J = 11.5, H-C(6); 3.40-3.27 (m, addn. of $D_2O \rightarrow 3.35, dd, J = 5.4, 11.5, H'-C(6), \rightarrow 3.34, d, J = 8.8, J = 0.4$ H-C(2)); 3.15 (m, addn. of $D_2O \rightarrow t$, $J \approx 8.5$, irrad. at 3.34 $\rightarrow d$, $J \approx 8.5$, H-C(3)); 3.11-3.03 (m, addn. of $D_2O \rightarrow change, H-C(4), H-C(5)$; 2.12-2.01 (m, H-C(4')); 1.93 (ddd, J = 3.9, 8.2, 11.7, H'-C(4')); 1.78 (t, t, t) J = 6.3, H - C(5'). ¹³C-NMR (150 MHz, D₂O): *Table 5*. ¹³C-NMR (50 MHz, (D₆)DMSO): *Table 5*. CI-MS: 251 (5), 250 (100, $[M + NH_4]^+$). Anal. calc. for $C_{10}H_{16}O_6$ (232.24): C 51.72, H 6.94; found: C 51.61, H 7.07.

(1R, 1'S, 6'R)-2,3,4,6-Tetra-O-pivaloylspiro[1,5-anhydro-D-glucitol-1,7'-[2]oxabicyclo[4.1.0]heptane] (12). a) A soln. of 10 (5 ml, 55.16 mmol) in 1,4-dioxane (5 ml) was heated under N₂ to 45°, treated dropwise with a cooled (0°) soln. of 1 (0.9 g, 1.71 mmol) in 1,4-dioxane (5 ml), and stirred for 3 h. Evaporation and prep. HPLC (hexane/Et₂O 3:1) of the residue (831 mg) gave (Z,Z)-11 [22] (478 mg, 55%) and 12 (137 mg, 14%) which crystallized from MeOH.

b) A soln. of 10 (1.0 ml, 11.03 mmol) in abs. THF (2 ml) was cooled under N₂ to -60° , treated dropwise with a cooled (0°) soln. of 1 (200 mg, 0.38 mmol) in abs. THF (2 ml), and irradiated (Hg lamp with Solidex filter) for 2 h. Evaporation, FC (hexane/Et₂O 2:1), and prep. HPLC (hexane/Et₂O 3:1) gave (Z,Z)-11 (101 mg, 52%) and 12 (20 mg, 9%). M.p. 200° (MeOH). R_f (hexane/Et₂O 1:2) 0.70. Prep. HPLC: t_g (hexane/Et₂O 3:1, 14 ml/ min) $5.5 \ [\alpha]_{D}^{25} = +62.6 \ (c = 1.07, CHCl_3)$. IR (KBr): 3020w (sh), 2980s, 2940m (sh), 2910m (sh), 2880m, 1745s, 1480s, 1460m, 1440m (sh), 1400m, 1370m, 1275s, 1265s (sh), 1240m, 1230m, 1195s (sh), 1170s (sh), 1150s (sh), 1140s, 1120s (sh), 1100s (sh), 1090s, 1070m, 1040s, 980m, 945m, 895m, 870m, 760m, 640m. ¹H-NMR (400 MHz, C_6D_6 : 5.67 (d, J = 9.1, irrad. at 0.81 \rightarrow NOE (3.3%), H-C(2)); 5.62 (t, J = 9.0, irrad. at 3.65 \rightarrow NOE (4.0%), H-C(3); 5.49 (t, $J \approx 9.3$, H-C(4)); 4.47 (dd, J = 1.1, 12.2, H-C(6)); 4.08 (ddd, J = 1.1, 5.0, 10.2, irrad. at $4.47 \rightarrow dd, J = 4.9, 10.4, H-C(5); 4.05 (dd, J = 5.1, 12.2, irrad. at 4.47 \rightarrow d, J = 5.2, H'-C(6); 3.65 (d, J = 8.1, 12.2, irrad. at 4.47)$ irrad. at 0.81 \rightarrow NOE (7.0%), H–C(1')); 3.57 (br. td, $J \approx 3.2$, 10.5, irrad. at 1.72 \rightarrow dd, J = 2.1, 10.4, H–C(3')); 3.05 (dt, $J \approx 2.0$, 10.9, irrad. at 1.72 \rightarrow dd, J = 1.7, 10.3, irrad. at 3.65 \rightarrow NOE (2.8%), H'-C(3')); 1.79-1.66 (m, irrad. at 1.44 \rightarrow change, H-C(4'), H-C(5')); 1.50-1.37 (m, irrad. at 0.81 \rightarrow change, irrad. at 1.72 \rightarrow change, irrad. at 0.81 \rightarrow NOE (2.6%), H'-C(5')); 1.19, 1.17, 1.14 (3s, 3 t-Bu); 1.05-0.96 (m, irrad. at 0.81 \rightarrow change, irrad. at $1.44 \rightarrow$ change, irrad. at $1.72 \rightarrow$ change, H' - C(4'); 0.99 (s, t-Bu); $0.81 (t, J \approx 7.9, irrad. at at (s, t, t))$ 1.44 → d, J = 7.9, irrad. at 3.65 → NOE (4.8%), H-C(6')). ¹³C-NMR (50 MHz, C₆D₆): Table 5; additional $ly, 177.53, 176.92, 176.43, 176.10 (4s, 4C=O); 38.91 (s, Me_3C); 38.82 (s, 2 Me_3C); 38.72 (s, Me_3C);$ 27.37 (q, Me_3C); 27.20 (q, $2Me_3C$); 27.07 (q, Me_3C). CI-MS: 601 (35), 600 (100, $[M + NH_4]^+$), 380 (18), 379 (82), 346 (26), 277 (27), 263 (7). Anal. calc. for $C_{31}H_{50}O_{10}$ (582.74): C 63.90, H 8.65; found: C 64.16, H 8.85.

(1R,1'S,6'R)-2,3,4,6-Tetra-O-benzylspiro[1,5-anhydro-D-glucitol-1,7'-[2]oxabicyclo[4.1.0]heptane] (14). a) A suspension of 10 (3.5 ml, 38.61 mmol) and 4 Å-molecular sieves (1.0 g) in 1,4-dioxane (5 ml) was treated slowly at 23° with a cooled (0°) soln. of 2 (650 mg, 1.18 mmol) in 1,4-dioxane (5 ml), stirred for 3 h, and filtered through Celite (washing several times with CH₂Cl₂). Evaporation and several crystallizations from AcOEt/hexane gave (Z,Z)-13 [22] (150 mg) as colorless needles. FC (hexane/AcOEt 4:1) of the combined mother liquors gave (Z,Z)-13 (50 mg; total 200 mg, 32%), (E,E)-13 [22] (53 mg), and a mixture (E,E)-13/14 (235 mg). Prep. HPLC (hexane/ AcOEt 4:1) of this mixture afforded (E,E)-13 (127 mg; total 180 mg, 28%) and 14 (65 mg, 9%). R_f (hexane/ AcOEt 1:1) 0.72. Prep. HPLC: $t_{\rm R}$ (hexane/AcOEt 4:1, 15 ml/min) 4.9. $[\alpha]_D^{25} = +51.9 (c = 1.4, \text{ CHCl}_3)$. IR (CHCl₃): 3000m, 2950m (sh), 2920m (br.), 2860m (br.), 1495m, 1450w, 1400w, 1360m, 1305w, 1280w, 1260m, 1235m, 1185w, 1145m, 1125s, 1090s, 1070s (sh), 1025s, 1010m (br.), 910w, 870w, 695s, 645w. ¹H-NMR (400 MHz, $C_{6}D_{6}$): 7.36-7.22 (m, 4 arom. H); 7.20-7.02 (m, 16 arom. H); 4.93 (d, J = 11.4), 4.82 (d, J = 11.3), 4.76 (d, J = 11.4), 4.70 (d, J = 11.5), 4.68 (d, J = 11.4), 4.50 (d, J = 12.3), 4.38 (d, J = 12.2), 4.30 (d, J = 11.6), 4.70 (d,8 PhCH); 4.10 (ddd, J = 1.9, 4.2, 9.5, H-C(5)); 3.93 (t, $J \approx 9.1$, H-C(4)); 3.88 (t, $J \approx 8.7$, H-C(3)); 3.88 (d, J = 8.1, irrad. at 1.15 \rightarrow s, irrad. at 1.15 \rightarrow NOE (6.5%), H-C(1')); 3.79 (dd, J = 4.0, 11.0, H-C(6)); $3.78 (d, J = 9.0, \text{ irrad. at } 1.15 \rightarrow \text{NOE} (1.1\%), \text{H} - \text{C}(2)); 3.73 (dd, J = 1.9, 11.0, \text{H}' - \text{C}(6)); 3.66 (br. td, J = 3.3, 1.0, \text{H}' - \text{C}(6)$ 10.5, irrad. at $1.15 \rightarrow dd$, J = 3.5, 10.5, H - C(3'); 3.18 (dt, J = 2.0, 10.4, irrad. at $1.15 \rightarrow t$, J = 10.9, H' - C(3'); 1.96 (br. dd, $J \approx 6.0$, 12.8, irrad. at $1.15 \rightarrow dd$, $J \approx 6.2$, 13.0, H-C(5'); 1.92-1.82 (m, irrad. at 1.15 \rightarrow change, irrad. at $1.15 \rightarrow \text{NOE} (9.1\%)$, H-C(4'); $1.67-1.55 (m, \text{ irrad. at } 1.15 \rightarrow \text{br. } t, J \approx 11.5, \text{ irrad. at } 1.15 \rightarrow \text{NOE}$ (4.9%), H'-C(5'); 1.16 (t, $J \approx 7.9$, irrad. at $3.78 \rightarrow \text{NOE}(1.3\%), H-C(6')$; 1.20–1.09 (m, H'-C(4')). ¹³C-NMR (50 MHz, C₅D₆): Table 5; additionally, 139.61, 139.44, 139.13, 138.93 (4s); 128.68-127.53 (several d); 75.50, 75.03, 74.83, 73.03 (4t, 4PhCH₂). CI-MS: 626 (10), 625 (42), 624 (100, $[M + NH_4]^+$), 391 (6). Anal. calc. for C₃₉H₄₂O₆ (606.77): C 77.20, H 6.98; found: C 77.10, H 7.10.

(1S,1'S,5'R)-1'-Methyl-2,3,4,6-tetra-O-pivaloylspiro[1,5-anhydro-D-glucitol-1,6'-[2]oxabicyclo[3.1.0]-hexane] (16). A soln. of 15 (2.8 ml, 30.38 mmol) in 1,4-dioxane (5 ml) was heated under N₂ to 45°, treated dropwise with a cooled (0°) soln. of 1 (790 mg, 1.50 mmol) in 1,4-dioxane (5 ml), and stirred for 2 h. Evaporation and prep. HPLC (hexane/Et₂O 4:1) gave (Z,Z)-11 (385 mg, 50%) and 16 (210 mg, 24%) which afforded colorless needles from MeOH. M.p. 175° (MeOH). R_f (hexane/Et₂O 1:2) 0.67. Prep. HPLC: t_p (hexane/Et₂O 4:1, 14 ml/min) 6.1. $[\alpha]_{D}^{25} = +60.3 (c = 1.00, CHCl_3)$. IR (KBr): 2980*m*, 2940*m* (sh), 2910*w*, 2880*w*, 1740*s*, 1730*s* (sh), 1480*m*, 1460*w*, 14 1400w, 1370w, 1285m, 1210w, 1160s, 1150s (sh), 1100m, 1090w, 1050w, 1030w, 980w, 960w. ¹H-NMR (400 MHz, C_6D_6): 5.82 (d, J = 10.0, irrad. at 1.26 \rightarrow NOE (3.6%), H-C(2)); 5.64 (dd, J = 8.9, 9.9, irrad. at 1.69 \rightarrow NOE (2.8%), H-C(3); 5.01 (dd, J = 8.8, 10.2, H-C(4)); 4.48-4.42 (m, with virtual coupling, H-C(6)); 4.03-3.87 (m, H-C(5), H'-C(6), 2 H-C(3'); 1.93 (ddd, J = 5.1, 8.6, 12.1, irrad. at 1.78 \rightarrow change, H-C(4'); 1.82- $1.72 (m, \text{irrad. at } 1.26 \rightarrow \text{NOE} (5.1\%), \text{H}'-\text{C}(4')); 1.69 (s, \text{irrad. at } 5.64 \rightarrow \text{NOE} (8.1\%), \text{irrad. at } 1.26 \rightarrow \text{NOE}$ (2.6%), Me); 1.26 (d, J = 6.1, irrad. at 1.78 \rightarrow s, irrad. at 1.69 \rightarrow NOE (2.7%), H-C(5')); 1.20, 1.18, 1.17, 1.04 (4s, 4 t-Bu). ¹³C-NMR (50 MHz, C₆D₆): Table 5; additionally, 177.47, 176.89, 176.48, 176.14 (4s, 4 C=O); $38.88(s, Me_3C)$; $38.83(s, 2Me_3C)$; $38.69(s, Me_3C)$; $27.41(q, Me_3C)$; $27.26(q, 2Me_3C)$; 27.19 (q, Me_3C) . CI-MS: 601 (35), 600 (100, $[M + NH_4]^+$), 481 (13), 380 (22), 379 (98), 279 (48), 277 (19), 179 (12), 177 (12). Anal. calc. for C₃₁H₅₀O₁₀ (582.74): C 63.90, H 8.65; found: C 64.11, H 8.77.

(1RS,2SR)- and (1RS,2RS)-1-(Diphenylphosphinoyl)-1-methoxyoctan-2-ol (19 and 20, resp.). Prepared according to [28]: 19/20 52:48 (3.27 g, 79%). Crystallization (2 ×) from AcOEt gave pure 19 (0.51 g). A sample of the combined mother liquors (2.76 g, 19/20 43:57) was separated by prep. HPLC (hexane/Et₂O/THF 4:3:3, 25 ml/min; t_R 23.2 (20) and 27.4 (19)).

Data of 19: M.p. 111° ([28]: 111°). R_f (hexane/AcOEt 1:5) 0.44. IR (CHCl₃): 3450-3200w (br.), 3000m, 2960s, 2930s, 2880m (sh), 2860m, 2840w (sh), 1595w, 1490w, 1460w, 1440s, 1380w, 1315w, 1245w (br.), 1190w (sh), 1160s, 1120s, 1095s, 1070s, 1050m, 1030m, 1000w, 955w, 815w, 715w, 700s, 660w, 620w. ¹H-NMR (400 MHz, CDCl₃): 8.08-7.98 (m, 2 arom. H); 7.90-7.81 (m, 2 arom. H); 7.62-7.46 (m, 6 arom. H); 4.32 (br. s, exchange with D₂O, OH); 3.92 (tq, $J \approx 2.0$, 9.0, addn. of D₂O $\rightarrow dq$, J = 2.6, 9.2, H–C(2)); 3.72 (dd, 2J (H,P) = 5.7, J = 8.8, irrad. at 3.92 $\rightarrow dd$, J = 2.5, 5.5, H–C(1)); 3.26 (s, MeO); 1.76-1.68 (m, 1 H); 1.61-1.42 (m, 3 H); 1.39-1.20 (m, 6 H); 0.86 (t, J = 6.8, Me). ¹³C-NMR (50 MHz, CDCl₃): Table 5; additionally, 132.93-127.88 (m).

Data of **20**: Oil. R_f (hexane/AcOEt 1:5) 0.44. IR (CHCl₃): 3500-3200w (br.), 3000m, 2960m, 2930m, 2860m, 2840w (sh), 1595w, 1485w, 1460w, 1440m, 1380w, 1315w, 1250w (br.), 1200m (sh), 1165s, 1120s, 1095s, 1070s, 1050s (sh), 1030s, 1000w, 960w, 710w (sh), 700m, 660w, 625w. ¹H-NMR (400 MHz, CDCl₃): 8.05-7.97 (m, 2 arom. H); 7.89-7.82 (m, 2 arom. H); 7.59-7.45 (m, 6 arom. H); 4.05 (br. dquint., $J \approx 11$, 6.2, addn. of $D_2O \rightarrow dq$, $J \approx 11$, 6.2, H-C(2)); 3.93 (dd, J = 3.9, ²J(H,P) = 6.0, H-C(1)); 3.30 (s, MeO); 3.27 (d, J = 6.3, exchange with D_2O ,

HO-C(2)); 1.62-1.53 (m, 2H); 1.53-1.42 (m, 1H); 1.32-1.12 (m, 7H); 0.84 (t, J = 7.0, Me). ¹³C-NMR (50 MHz, CDCl₃): *Table 5*; additionally, 133.04-127.88 (m).

(1RS,1'SR)- and (1RS,1'SR)-1-[[Diphenylphosphinoyl)methoxymethyl]heptyl Cinnamate (21 and 22, resp.). A soln. of 19/20 43:57 (22.8 g, 63 mmol) in pyridine (100 ml) and cinnamoyl chloride (21.0 g, 126 mmol) was stirred for 1.5 h at 23°. Evaporation, FC (CH₂Cl₂/AcOEt 3:1), and an additional FC (CH₂Cl₂/AcOEt 6:1 \rightarrow 5:1 \rightarrow 4:1 \rightarrow 3:1) gave 21 (12.10 g, 39%), 22 (10.53 g, 34%), and 21/22 8:92 (6.17 g, 20%).

Data of **21**: R_f (AcOEt/CH₂Cl₂ 1:2) 0.64. IR (CHCl₃): 3060w, 2990m (sh), 2960s, 2930s, 2860m, 2830w (sh), 1710s, 1640s, 1595w, 1580w, 1500w, 1485w, 1470m (sh), 1450m, 1440m, 1380w, 1360w, 1330m, 1310s, 1280m, 1270m (br.), 1250m, 1160s, 1120s, 1100s, 1070m, 1050m, 1030w, 1000m, 990m (sh), 980m, 940w (br.), 870w, 710m (sh), 695s, 660w. ¹H-NMR (400 MHz, CDCl₃): 8.08-7.98 (m, 2 arom. H); 7.96-7.87 (m, 2 arom. H); 7.46 (d, J = 16.1, PhCH=CH); 7.57-7.34 (m, 11 arom. H); 5.96 (d, J = 16.0, PhCH=CH); 5.50 (dddd, J = 2.6, 3.6, 10.0, 12.2, H-C(1)); 4.21 (dd, J = 2.5, ²J(H,P) = 9.6, irrad. at 5.50 \rightarrow d, ²J(H,P) = 9.5, H-C(1')); 3.36 (s, MeO); 2.11-2.00 (m, 1H); 1.92-1.83 (m, 1H); 1.40-1.14 (m, 8H); 0.84 (t, J = 7.0, Me). ¹³C-NMR (50 MHz, CDCl₃): Table 5; additionally, 165.95 (s, C=O); 144.55 (d, PhCH=CH); 133.93-127.76 (m); 117.23 (d, PhCH=CH). CI-MS: 492 (34), 491 (100, [M + 1]⁺), 379 (29).

Data of **22**: R_t (AcOEt/CH₂Cl₂ 1:2) 0.44. IR (CHCl₃): 3060w, 2990s, 2970s (sh), 2960s, 2930s, 2860m, 2830w, 1710s, 1640s, 1595w, 1580w, 1500w, 1465m (sh), 1450s, 1440s, 1380w, 1355m (sh), 1330m, 1310s, 1280s, 1270m, 1255m, 1170s, 1120s, 1100s, 1070m, 1045m, 1030m, 1020m (sh), 1000m, 990m, 980m, 940w, 885w, 865w, 845w, 815w, 710m (sh), 695s, 680m (sh), 660m. ¹H-NMR (400 MHz, CDCl₃): 8.14-8.06 (m, 2 arom. H); 7.91-7.82 (m, 2 arom. H); 7.48 (d, J = 15.9, PhCH=CH); 7.54-7.34 (m, 11 arom. H); 5.98 (d, J = 16.0, PhCH=CH); 5.53 (qd, J = 5.4, 10.3, H-C(1)); 3.96 (dd, J = 5.6, ²J(H,P) = 10.0, irrad. at 5.53 \rightarrow d, ²J(H,P) = 9.9, H-C(1')); 3.19 (s, MeO); 1.98-1.87 (m, 1H); 1.87-1.76 (m, 1H); 1.40-1.14 (m, 8H); 0.83 (t, J = 6.9, Me). ¹³C-NMR (50 MHz, CDCl₃): Table 5; additionally, 165.55 (s, C=O); 144.35 (d, PhCH=CH); 133.93-127.67 (m); 117.08 (d, PhCH=CH). MS: 492 (34), 491 (100, [M + 1]⁺).

Saponification of 21. A soln. of 21 (12.1 g, 25 mmol) in 3% KOH in MeOH (250 ml, 0.134 mol) was stirred at 23° for 1.5 h and treated with Et_2O (1000 ml) and sat. NaHCO₃ soln. (500 ml). After separation and extraction of the aq. layer with Et_2O (300 ml), drying of the combined org. layers (MgSO₄), evaporation, and FC (AcOEt) gave 19 (7.73 g, 87%).

Saponification of 22. Analogously to 21, with 22 (10.5 g, 21 mmol): 20 (7.18 g, 93%).

(E)-1-Methoxyoct-1-ene (23) [28] [29]. Prepared according to [28]. ¹H-NMR (400 MHz, CDCl₃): 6.28 (br. d, J = 12.6, H–C(1)); 4.73 (td, J = 7.3, 12.6, H–C(2)); 3.50 (s, MeO); 1.91 (br. q, $J \approx 6.9$, 2H–C(3)); 1.38–1.22 (m, 8H); 0.89 (t, J = 6.9, Me). ¹³C-NMR (100 MHz, CDCl₃): Table 5. EI-MS: 142 (11, M^+), 71 (100), 41 (24).

(Z)-1-Methoxyoct-1-ene (24). Similarly to 23, with 20 (6.0 g, 17 mmol) and NaH (1.8 g, 0.075 mol) in THF (350 ml): 24 (2.05 g, 87%). IR (CHCl₃): 3030w (sh), 3000m, 2950s (sh), 2930s, 2860s, 2820m (sh), 1665s, 1460s, 1440w (sh), 1390m, 1380w (sh), 1260s, 1105s, 960w, 940w, 930w. ¹H-NMR (400 MHz, CDCl₃): 5.86 (td, J = 1.4, 6.2, H–C(1)); 4.34 (dt, J = 6.3, 7.3, H–C(2)); 3.58 (s, MeO); 2.05 (br. q, $J \approx 7.3$, 2 H–C(3)); 1.38–1.22 (m, 8 H); 0.88 (t, J = 6.9, Me). ¹³C-NMR (100 MHz, CDCl₃): Table 5. EI-MS: 142 (13, M^+), 71 (100), 41 (24).

Reaction of 1 with 24. A soln. of 24 (2.0 g, 14.1 mmol) in abs. 1,4-dioxane (5 ml) was heated to 45° under N₂, slowly treated with a cooled (0°) soln. of 1 (800 mg, 1.519 mmol) in abs. 1,4-dioxane (5 ml), and stirred for 3 h. Evaporation (23°, 50 mbar) and FC (hexane/Et₂O 3:1) gave (*Z*,*Z*)-11 (370 mg, 47%) and a mixture of the cyclopropanes 25–27 and 24 (¹H-NMR: no trace of 23). The enol ether 24 was removed under high vacuum overnight. The fractions obtained at 4.5–5.8 min on prep. HPLC (hexane/AcOEt 4:1, 15 ml/min) of the residue (447 mg) were collected and evaporated. Prep. HPLC (hexane/CH₂Cl₂/ Et₂O 16:1:1, 15 ml/min) gave 25 (107 mg, 11%; *t*_R 11.8), 26 (41 mg, 4%; *t*_R 15.9), and 27 (15 mg, 1.5%; *t*_R 18.2).

(1R,2'R,3'S)-2'-Hexyl-3'-methoxy-2,3,4,6-tetra-O-pivaloylspiro[1,5-anhydro-D-glucitol-1,1'-cyclopropane](25). Slow evaporation of a saturated soln. of 25 in hexane, gave colorless crystals. M.p. 103° (hexane). R_f (hexane/Et₂O 3:1) 0.61, R_f (hexane/CH₂Cl₂/Et₂O 16:1:1) 0.30. $[a]_D^{25} = + 76.4$ (c = 1.164, CHCl₃). IR (CHCl₃): 3030w, 2970m, 2930m, 2910m (sh), 2870m, 2860w (sh), 1740s, 1480m, 1460m, 1400w, 1370w, 1280m, 1235w, 1175s (sh), 1155s (sh), 1145s, 1095m, 1050w, 1035m, 1015w, 980w, 940w, 910w, 880w (sh). ¹H-NMR (400 MHz, CDCl₃): 5.35 (t, $J \approx 9.2$, irrad. at 3.16 \rightarrow NOE (4.3%), H-C(3)); 5.29 (d, J = 9.4, irrad. at 0.62 \rightarrow NOE (2.0%), H-C(2)); 5.13 (dd, J = 8.9, 10.2, H-C(4)); 4.18 (dd, J = 1.8, 12.1, H-C(6)); 3.93 (dd, J = 6.5, 12.0, H'-C(6)); 3.84 (ddd, J = 1.8, 6.5, 10.2, irrad. at 5.35 \rightarrow NOE (8.1%), irrad. at 5.35 \rightarrow NOE (2.9%), H-C(3)); 1.51 (br. dd, J = 7.2, irrad. at 0.63 \rightarrow NOE (8.1%), irrad. at 5.35 \rightarrow NOE (2.9%), H-C(3)); 1.51 (br. dd, J = 6.2, 13.2, H-C(1'')); 1.475 (dt, $J \approx 6.1$, 13.3, H'-C(1'')); 1.39-1.24 (m, 8H); 1.22, 1.17 (s, 2 *t*-Bu); 1.21 (s, 2 *t*-Bu); 0.88 (t, J = 6.8, Me); 0.62 (q, $J \approx 7.1$, irrad. at 3.17 \rightarrow NOE (7.2%), H-C(2')). ¹³C-NMR (100 MHz, CDCl₃): Table 5; additionally, 177.99, 177.24, 176.66, 176.38 (4s, 4 C=O); 38.70 (s, 4 Me₃C); 27.18 (q, Me_3C); 27.07 (q, $3Me_3C$). CI-MS: 659 (40), 658 (100, $[M + NH_4]^+$), 539 (13), 438 (15), 437 (56). Anal. calc. for C₃₅H₆₀O₁₀ (640.86): C 65.60, H 9.44; found: C 65.87, H 9.66.

(1S,2'S,3'R)-2'-Hexyl-3'-methoxy-2,3,4,6-tetra-O-pivaloylspiro[1,5-anhydro-D-glucitol-1,1'-cyclopropane] (26). R_f (hexane/Et₂O 3:1) 0.61, R_f (hexane/CH₂Cl₂/Et₂O 16:1:1) 0.27. IR (CHCl₃): 3020w, 2970s (sh), 2960s, 2930s, 2910m (sh), 2870m, 2860m (sh), 1740s, 1480s, 1460m, 1425w, 1400m, 1370m, 1330w, 1280s, 1235w, 1170s (sh), 1155s (sh), 1145s (br.), 1095m, 1050w, 1035m, 1020w (sh), 985w, 940w, 920w(sh), 915w, 895w. ¹H-NMR (400 MHz, CDCl₃): 5.44 (d, J = 9.3, irrad. at 2.79 \rightarrow NOE (2.9%), H–C(2)); 5.24 (t, J = 9.3, H–C(3)); 5.17 (t, $J \approx 9.6$, irrad. at 5.44 \rightarrow NOE (5.1%), H–C(4)); 4.09 (br. d, J = 4.1, 2H–C(6)); 3.67 (td, J = 4.4, 9.9, H–C(5)); 3.36 (s, irrad. at 2.79 \rightarrow NOE (5.5%), MeO); 2.79 (d, J = 8.1, irrad. at 5.44 \rightarrow NOE (2.5%), H–C(3')); 1.67–1.52 (m, 2H); 1.52–1.39 (m, 2H); 1.39–1.24 (m, 6H); 1.22, 1.17 (2s, 2 t-Bu); 1.12 (s, 2 t-Bu); 1.17–1.12 (m, H–C(2')); 0.90 (t, J = 6.7, Me). ¹³C-NMR (100 MHz, CDCl₃): Table 5; additionally, 177.99, 177.24 (2s, 2 C=O); 176.52 (s, 2 C=O); 38.74 (s, 4 Me₃C); 27.18, 27.12, 27.05, 26.99 (4q, 4 Me₃C). CI-MS: 659 (40), 658 (100, [$M + NH_4$]⁺), 438 (15), 437 (56).

(1S,2''R,3'S)-2'-Hexyl-3'-methoxy-2,3,4,6-tetra-O-pivaloylspiro[1,5-anhydro-D-glucitol-1,1'-cyclopropane] (27): R_r (hexane/Et₂O 3:1) 0.61, R_r (hexane/CH₂Cl₂/Et₂O 16:1:1) 0.25. ¹H-NMR (400 MHz, CDCl₃): 5.76 (d, J = 8.8, H-C(2)); 5.33 (t, J = 8.8, irrad. at 3.64 → NOE (7.3%), H-C(3)); 5.17 (t, J ≈ 9.4, irrad. at 5.76 → NOE (4.3%), H-C(4)); 4.05 (dd, J = 2.3, 12.2, H-C(6)); 3.99 (dd, J = 5.8, 12.3, H'-C(6)); 3.64 (ddd, J = 2.3, 5.8, 9.9, H-C(5)); 3.33 (s, irrad. at 5.76 → NOE (1.1%), MeO); 3.30 (d, J = 8.6, H-C(3')); 1.83-1.72 (m, irrad. at 5.33 → NOE (1.9%), H-C(1'')); 1.72-1.62 (m, 1H); 1.55-1.42 (m, irrad. at 5.33 → NOE (2.2%), 2H); 1.42-1.26 (m, 6H); 1.21, 1.17 (s, 2 t-Bu); 1.14 (s, 2 t-Bu); 0.94 (dt, J = 5.7, 9.0, irrad. at 3.64 → NOE (6.3%), irrad. at 3.30 → NOE (5.7%), H-C(2')); 0.90 (t, J = 6.7, Me). ¹³C-NMR (100 MHz, CDCl₃): Table 5; additionally, 177.95, 177.10, 176.63, 176.39 (4s, 4 C=O); 38.71 (s, 4 Me₃C); 2.7.21, 2.7.14, 27.10, 27.05 (4q, 4 Me₃C).

X-Ray Analysis of **25**. Crystals were obtained from hexane. $C_{35}H_{60}O_{10}$ (640.85); monoclinic $P2_1$; a = 13.048 (2), b = 10.833 (3), c = 14.505 (2) Å; $\beta = 108.64$ (1)°; V = 1942.7 (4) Å³; $D_x = 1.095$ Mg/m³; Z = 2. Intensities were measured in the ω -scan mode on an Rigaku-AFC5R diffractometer (graphite monochromator, MoK_a, $\lambda = 0.71069$ Å) at 173 K, $2\Theta_{(max)} = 55^{\circ}$, scan speed of 16°/min in ω , scan width (1.37 + 0.35 tan $\Theta)^{\circ}$. Of the 4880 total collected reflections, 4679 unique reflections were observed. R = 0.0538, $R_w = 0.0570$. The structure was solved with the direct-methods routine of SHELXS-86 [41]. The non-H atoms were refined anisotropically, except for the disordered atoms which were refined isotropically. All calculations were performed using the TEXSAN crystallographic software package of Molecular Structure Corporation [42].

Reaction of 2 with 24. A soln. of 24 (1 g, 7.0 mmol) in abs. 1,4-dioxane (5 ml) under N₂ was quickly treated with a cooled (0°) soln. of 2 (400 mg, 0.73 mmol) in abs. 1,4-dioxane (5 ml) and stirred for 3 h at 23°. Evaporation (23°/50 mbar) and FC (hexane/AcOEt 6:1) gave (Z,Z)-13 (187 mg, 24%), (E,E)-13 (148 mg, 19%), and a mixture of the cyclopropanes and 24 (¹H-NMR: no trace of 23). The enol ether 24 was removed by drying under high vacuum overnight. Prep. HPLC (hexane/AcOEt 4:1, 16 ml/min) gave 28 (27 mg, 6%; t_R 3.7), an inseparable mixture 29/30 3:1 (29 mg, 6%; t_R 4.0), and 31 (9 mg, 2%, t_R 4.3).

(1R,2'R,3'S)-2,3,4,6-Tetra-O-benzyl-2'-hexyl-3'-methoxyspiro[1,5-anhydro-D-glucitol-1,1'-cyclopropane] (28): R_f (hexane/AcOEt 4:1) 0.74. IR (CHCl₃): 3080w (sh), 3060w, 3030w (br.), 3000m, 2950m (sh), 2920s, 2860s, 2830w (sh), 2800w (sh), 1500m, 1465m (sh), 1455s, 1425w, 1400w, 1380w (sh), 1360m, 1310w (br.), 1260m, 1250m, 1200w (sh), 1155s (sh), 1140s (sh), 1130s (br.), 1090s (br.), 1070s (sh), 1030s, 1015s (sh), 955w (sh), 910w, 890w (sh), 700s, 660w (sh), 645w, 605w. ¹H-NMR (600 MHz, C₆D₆, assignment based on a ¹H, ¹H-COSY spectrum): 7.36-7.31 (m, 4 arom. H); 7.27–7.24 (m, 2 arom. H); 7.21–7.04 (m, 14 arom. H); 4.95 (d, J = 11.3), 4.93 (d, J = 11.5), 4.89 (d, J = 11.4), 4.77 (d, J = 11.4), 4.74 (d, J = 11.3), 4.55 (d, J = 12.1), 4.47 (d, J = 11.2), 4.45 (d, J = 11.9), 4.55 (d, J = 12.1), 4.47 (d, J = 11.2), 4.45 (d, J = 11.9), 4.55 (d, J = 12.1), 4.47 (d, J = 11.2), 4.45 (d, J = 11.9), 4.55 (d, J = 12.1), 4.47 (d, J = 11.2), 4.45 (d, J = 11.9), 4.55 (d, J = 12.1), 4.47 (d, J = 11.2), 4.45 (d, J = 11.9), 4.55 (d, J = 12.1), 4.47 (d, J = 11.2), 4.45 (d, J = 11.9), 4.55 (d, J = 12.1), 4.558 PhCH); 4.02 (dd, J = 8.7, 9.9, H-C(4)); 3.97 (td, J = 2.6, 9.9, H-C(5)); 3.92 (t, J = 8.8, irrad. at 3.39 \rightarrow NOE (2.5%), H-C(3)); 3.81 (d, J = 2.6, 2H-C(6)); 3.79 (d, J = 9.0, irrad. at $1.12 \rightarrow \text{NOE} (2.1\%)$, H-C(2)); $3.39 (d, J = 7.1, \text{ irrad. at } 3.92 \rightarrow \text{NOE} (3.6\%), \text{ irrad. at } 1.12 \rightarrow \text{NOE} (8.3\%), \text{H}-C(3')); 3.20 (s, \text{ irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{ irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%), \text{H}-C(3')); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%)); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%)); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%)); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{NOE} (3.5\%)); 3.20 (s, \text{Irrad. at } 1.12 \rightarrow \text{Irrad. at } 1$ $3.39 \rightarrow \text{NOE}$ (4.5%), MeO); 1.92 (dddd, J = 5.9, 7.5, 9.5, 13.7, irrad. at $1.12 \rightarrow \text{NOE}$ (2%), H-C(1")); 1.71 (tdd, $J = 5.8, 9.4, 13.7, \text{ irrad. at } 1.12 \rightarrow \text{NOE}$ (4%), H' - C(1''); 1.60-1.50 (m, 1H); 1.51-1.43 (m, 1H); $1.42-1.37 (m, 2H); 1.36-1.29 (m, 4H); 1.12 (ddd, J = 6.0, 7.1, 8.3, irrad. at 3.39 \rightarrow NOE (6.7\%), H-C(2'));$ 0.91 (t, J = 7.5, Me). ¹³C-NMR (100 MHz, C_5D_5): Table 5; additionally, 139.69 (s); 139.48 (2s); 138.87 (s); 128.57-127.52 (several d); 75.46, 75.32, 74.93, 73.42 (4t, 4 PhCH₂). CI-MS: 684 (12), 683 (49), 682 (100, $[M + NH_4]^+$, 449 (25).

(1S,2'S,3'R)- and (1S,2'R,3'S)-2,3,4,6-Tetra-O-benzyl-2'-hexyl-3'-methoxyspiro[1,5-anhydro-D-glucitol-1,1'-cyclopropane] (29/30). $R_{\rm f}$ (hexane/AcOEt 4:1) 0.58. ¹H-NMR (600 MHz, $C_{\rm 6}D_{\rm 6}$; 29/30 3:1; assignment based on

¹H-COSY): 7.37-7.25 (*m*, 6 arom. H); 7.20-7.05 (*m*, 14 arom. H); 4.94 (*d*, J = 11.2), 4.92 (*d*, J = 11.3), 4.88 (*d*, J = 11.3), 4.78 (*d*, J = 11.4), 4.69 (*d*, J = 11.2), 4.53 (*d*, J = 12.1), 4.47 (*d*, J = 11.5), 4.44 (*d*, J = 12.2, 8 PhCH); 3.90 (*t*, $J \approx 9.3$, H-C(4)); 3.88 (*d*, J = 9.1, H-C(2)); 3.79 (*t*, J = 9.1, irrad. at 1.44 \rightarrow NOE (1.8%), H-C(3)); 3.77 (*dd*, J = 1.8, 11.1, H-C(6)); 3.72 (*dd*, J = 4.2, 11.0, H'-C(6)); 3.65 (*ddd*, J = 1.9, 4.1, 9.8, H-C(5)); 3.34 (*s*, MeO); 3.22 (*d*, J = 8.1, irrad. at 1.44 \rightarrow NOE (5.8%), irrad. at 3.88 \rightarrow NOE (1.4%), H-C(3')); 1.95 (br. *q*, $J \approx 9.3$, H-C(1'')); 1.70-1.62 (*m*, irrad. at 3.65 \rightarrow NOE (5.9%), H'-C(1')); 1.58-1.47 (*m*, H-C(2')); 1.44 (*dt*, $J \approx 4.6$, 8.7, irrad. at 3.22 \rightarrow NOE (7.5%), H-C(2')); 1.41-1.30 (*m*, 3H); 1.30-1.23 (*m*, 4H); 0.87 (*t*, $J \approx 7.0$, Me); 30: 4.95 (*d*, J = 11.3), 4.92 (*d*, J = 11.3), 4.84 (*d*, J = 11.4), 4.75 (*d*, J = 10.8), 4.68 (*d*, J = 10.6), 4.64 (*d*, J = 11.3), 4.43 (*d*, J = 12.1), 4.36 (*d*, J = 12.1, 8PhCH); 4.21 (*d*, J = 7.5, H-C(2)); 4.02 (*t*, J = 7.8, H-C(3)); 3.98 (*t*, $J \approx 8.7$, H-C(4)); 3.74-371 (hidden by signals of 29, H-C(5)); 3.69 (*dd*, J = 4.5, 10.4, H-C(6)); 3.60 (*dd*, J = 1.7, 10.4, H'-C(6)); 3.43 (*d*, J = 8.1, irrad. at 1.99 \rightarrow NOE (6.8%), H-C(3')); 3.19 (*s*, MeO); 1.93-1.83 (*m*, 2H-C(1'')); 1.56-1.25 (*m*, 8H); 1.09 (*dt*, J = 6.1, 8.30 (several *d*); 75.47, 75.37, 75.08, 73.58 (4*t*, 4 PhCH₂ of 29); 74.91, 74.69, 74.38 (3*t*, 3PhCH, of 30).

(1R,2'S,3'R) - 2,3,4,6- Tetra-O-benzyl-2'-hexyl-3'-methoxyspiro[1,5-anhydro-D-glucitol-1,1'-cyclopropane] (31). R_t (hexane/AcOEt 4:1) 0.58. ¹H-NMR (600 MHz, C_6D_6 , ca. 90% pure, assignment based on ¹H, ¹H-COSY): 7.40 (br. d, J = 7.2, 2 arom. H); 7.31–7.26 (m, 6 arom. H); 7.19–7.12 (m, 10 arom. H); 7.11–7.05 (m, 2 arom. H); 4.92 (d, J = 11.4), 4.86 (d, J = 11.7, 2 PhCH); 4.69 (d, J = 11.3, 2 PhCH); 4.68 (d, J = 11.6), 4.63 (d, J = 11.4), 4.42 (d, J = 12.1), 4.34 (d, J = 12.1, 4 PhCH); 4.16 (dd, J = 7.6, 9.8, H–C(4)); 4.10 (dd, J = 4.8, 7.5, H–C(3)); 4.06 (d, J = 4.8, H–C(2)); 4.00 (ddd, J = 2.2, 3.6, 9.8, irrad. at 3.34 → NOE (4.0%), H–C(5)); 3.73 (dd, J = 3.7, 10.6, H–C(6)); 3.60 (dd, J = 2.1, 10.5, H'–C(6)); 3.34 (d, J = 8.1, irrad. at 4.00 → NOE (4.0%), H–C(3')); 3.28 (s, MeO); 1.86 (dddd, J = 4.6, 6.2, 9.4, 13.8, H–C(1'')); 1.67 (dtd, J = 5.8, 9.4, 13.8, H'–C(1'')); 1.50– 1.41 (m, 2H–C(2'')); 1.38 (ddd, J = 4.6, 8.2, 9.2, irrad. at 3.34 → NOE (5.4%), H–C(2')); 1.32–1.17 (m, 6H); 0.86 (t, J = 7.1, Me). ¹³C-NMR (100 MHz, C_6D_6): Table 5; additionally, 139.70, 139.20 (2s, 4 arom. C); 128.42– 127.37 (several d); 74.41, 73.50, 73.41, 72.75 (4t, 4 PhCH₂).

REFERENCES

- [1] A. Zapata, B. Bernet, A. Vasella, Helv. Chim. Acta, 1996, 79, 1169.
- [2] A. Vasella, Pure Appl. Chem. 1991, 63, 507.
- [3] A. Vasella, Pure Appl. Chem. 1993, 65, 731.
- [4] A. Vasella, in 'Bioorganic Chemistry', Ed. S. M. Hecht, Oxford University Press, New York, in press.
- [5] C. Waldraff, Ph. D. Thesis, Universität Zürich, 1995.
- [6] A. Vasella, C. A. A. Waldraff, Helv. Chim. Acta 1991, 74, 585.
- [7] A. Vasella, C. Witzig, R. Husi, Helv. Chim. Acta 1991, 74, 1362.
- [8] S. E. Mangholz, A. Vasella, Helv. Chim. Acta 1991, 74, 2100.
- [9] S. E. Mangholz, A. Vasella, Helv. Chim. Acta 1995, 78, 1020.
- [10] R. A. Moss, Acc. Chem. Res. 1989, 22, 15; ibid 1980, 13, 58.
- [11] A. Vasella, G. Baudin, L. Panza, Heteroatom Chem. 1991, 2, 151.
- [12] W. Schoeller, in 'Houben-Weyl's Methoden der organischen Chemie', 'Carbene (Carbenoide)', Thieme Verlag, Stuttgart, 1989, Vol. E19b pp. 14-41.
- [13] H. A. Staab, J. Ipaktschi, Tetrahedron Lett. 1966, 583.
- [14] K. H. Dötz, E. O. Fischer, Chem. Ber. 1972, 105, 1356.
- [15] C. K. Murray, D. C. Yang, W. D. Wulff, J. Am. Chem. Soc. 1990, 112, 5660.
- [16] J. S. Brimacombe, M. E. Evans, E. J. Forbes, A. B. Foster, J. M. Webber, Carbohydr. Res. 1967, 4, 239.
- [17] R. Murali, C. V. Ramana, M. Nagarajan, J. Chem. Soc., Chem. Commun. 1995, 217.
- [18] B. Rickborn, J. H.-H. Chan, J. Org. Chem. 1967, 32, 3576.
- [19] R. A. Moss, in 'Carbenes', Eds. M. Jones, Jr. and R. A. Moss, Wiley-Interscience, New York, 1973, Vol. 1, p. 153-304.
- [20] W. Kirmse, 'Carbene Chemistry', 2nd edn., Academic Press, New York, 1971, pp. 267-362.
- [21] F. Freeman, Chem. Rev. 1975, 75, 439.
- [22] A. Vasella, C. Witzig, C. Waldraff, P. Uhlmann, K. Briner, B. Bernet, L. Panza, R. Husi, Helv. Chim. Acta 1993, 76, 2847.
- [23] J. C.-Y. Cheng, U. Hacksell, G. D. Daves Jr., J. Org. Chem. 1985, 50, 2778.
- [24] C. Li, A. Vasella, Helv. Chim. Acta 1993, 76, 211.

- [25] R. D. Miller, D. R. McKean, Tetrahedron Lett. 1982, 23, 323.
- [26] J. Otera, Y. Niibo, Bull. Chem. Soc. Jpn. 1986, 59, 3977.
- [27] P. F. Hudrlik, A. M. Hudrlik, R. J. Rona, R. N. Misra, G. P. Withers, J. Am. Chem. Soc. 1977, 99, 1993.
- [28] C. Earnshaw, C. J. Wallis, S. Warren, J. Chem. Soc., Perkin Trans. 1 1979, 3099.
- [29] K. Tamao, T. Kakui, M. Kumada, Tetrahedron Lett. 1980, 21, 4105.
- [30] L. Horner, H. Schwarz, Tetrahedron Lett. 1966, 3579.
- [31] W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83, 1733.
- [32] C. Earnshaw, C. J. Wallis, S. Warren, J. Chem. Soc., Chem. Commun. 1977, 314.
- [33] T. A. M. van Schaik, A. van der Gen, Recl. Trav. Chim. Pays-Bas 1983, 102, 465.
- [34] L. Blanco, P. Amice, J.-M. Conia, Synthesis 1981, 291.
- [35] J. P. Marino, E. Laborde, J. Org. Chem. 1987, 52, 1.
- [36] B. Hofmann, H.-U. Reissig, Chem. Ber. 1994, 127, 2315.
- [37] F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, C. Caufield, M. Lipton, G. Chang, T. Hendrickson, J. Comput. Chem. 1990, 11, 440.
- [38] C. Wentrup, 'Reaktive Zwischenstufen I: Radikale, Carbene, Nitrene, gespannte Ringe', Thieme Verlag, Stuttgart, 1979, p. 162.
- [39] Semichem, 'AMPAC 5.0', 7128 Summit, Shawnee, KS 66216, 1994.
- [40] F. W. Lichtenthaler, S. Rönninger, H. J. Lindner, S. Immel, E. Cuny, Carbohydr. Res. 1993, 249, 305.
- [41] G. M. Sheldrick, 'SHELXS86, a Program for Crystal Structure Solution', in 'Crystallographic Computing 3', Eds. G. M. Sheldrick, C. Krüger, and R. Goddard, Oxford University Press, 1985, p. 175-189.
- [42] 'TEXRAN-TEXRAY Single Crystal Structure Analysis Package, Version 5.0', The Woodlands, Texas, 1974.
- [43] K. Briner, A. Vasella, Helv. Chim. Acta 1989, 72, 1371; ibid. 1990, 73, 1764.